

Ms. Lisa A. Gorton Environmental Engineer New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau C 625 Broadway Albany, NY 12233-7014

Subject:

Site Characterization Data Summary Addendum Former Dangman Park Manufactured Gas Plant Site Brooklyn, New York Site No. 224047 Index # A2-0552-0606

Dear Ms. Gorton:

On behalf of Brooklyn Union Gas d/b/a National Grid NY (National Grid), ARCADIS has prepared this Site Characterization (SC) Data Summary Addendum (SC Data Summary Addendum) for the former Dangman Park Manufactured Gas Plant (MGP) site (Site) located at 486 Neptune Avenue, Brooklyn, New York. As discussed in the April 8, 2010 Site Characterization Data Summary (SC Data Summary), a SC Data Summary Addendum was to be submitted to include a summary of the vapor intrusion (VI) investigation data (sub-slab soil vapor, ambient air, and indoor air) that were collected in February and March 2010.

The VI investigation activities outlined in the SC Work Plan Addendum – Vapor Intrusion Investigation, dated February 22, 2010, provided data to address the following objectives:

- Determine if MGP-related and/or non-MGP-related chemical constituents are present in sub-slab soil vapor and/or indoor air at the Site.
- Assess the potential for soil vapor intrusion.
- Evaluate, to the extent practicable, whether there are complete exposure pathways of soil vapor to indoor air (i.e., determine if vapors from MGPrelated constituents are migrating through various pathways into on-site buildings at concentrations that may result in an unacceptable human health risk).

ARCADIS of New York, Inc. Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631.249.7600 Fax 631.249.7610 www.arcadis-us.com

ENVIRONMENT

Date: May 5, 2010

Contact: Steven M. Feldman

Phone: (631) 391-5244

Email: Steven.Feldman@arcadisus.com

Our ref: B0036704.0000.00003

Imagine the result

G:\APROJECT\National Grid\Dangman Park\SC Report Addendum\SC Data Summary Addendum.doc

VI Investigation Field Activities

This section of the SC Data Summary Addendum describes the field activities that were conducted during the VI Investigation. The VI investigation included the installation of temporary sub-slab soil vapor points and the characterization of sub-slab soil vapor quality and indoor air quality.

Indoor Air Quality and Ambient Air Quality Sampling

The VI investigation consisted of collecting indoor air quality samples (IA-1 through IA-7) in seven (7) tenant spaces in the shopping center that overlie the former MGP structures and one (1) ambient air quality sample (along the sidewalk outside the shopping center). The indoor air quality samples and ambient air quality sample were collected on February 22, 2010 in accordance with the methods and procedures described in the Field Sampling Plan (FSP). The approximate sample locations and the individual tenant spaces cross referenced as Stores 1 through 9 are shown on Figure 1. Indoor air quality samples were collected in Stores 2 through 8. Indoor Air (Canister) and Ambient Air (Canister) Sample Collection Field Forms are provided in Appendix A of this SC Data Summary Addendum.

Prior to collecting the indoor air quality samples, a partial building survey and chemical inventory was conducted to assess potential indoor air sources that may contain the same compounds as MGP-related volatile constituents. Based on an initial building survey/inspection in the tenant spaces, the chemical inventory was primarily focused in the dry cleaners identified as Store 6, where chemical usage was apparent. Six (6) Material Safety Data Sheets (MSDSs) were obtained from Store 6. Store 6 currently uses ExxonMobil DF-2000 Fluid as a dry cleaning fluid. The DF-2000 Fluid MSDS indicates that the product is an aliphatic hydrocarbon. The MSDSs indicate that the other chemicals are used as stain removal agents. The Picrin stain removal agent contains trichloroethene (TCE). The HYDROCLENE P.O.G. stain removal agent contains hydrocarbons with the same Chemical Abstracts Service (CAS) Registry Number (64742-48-9) as the DF-2000 Fluid; CAS Registry Number 64742-48-9 corresponds to hydrotreated heavy naphtha (petroleum). The Pyratex stain removal agent contains <15% aliphatic ketone. 4-methyl-2-pentanone (also known as methyl isobutyl ketone [MIBK]) is an aliphatic ketone and was detected above its typical background indoor air concentration of 6.0 micrograms per cubic meter (µg/m³) in the Store 6 indoor air quality sample (IA-5 [19.5 µg/m³]). The MSDSs are provided in Appendix B of this SC Data Summary Addendum.

The indoor air quality and ambient air quality samples were submitted to the laboratory for the analysis of volatile organic compounds (VOCs) using EPA Method

Ms. Lisa A. Gorton May 5, 2010

TO-15. Table 1 summarizes the indoor air quality and ambient air quality sample analytical data. Samples were submitted to Alpha Analytical, Inc., a New York State Department of Health (NYSDOH) accredited laboratory certified for the analyses. The analytical methods, sample handling, and laboratory protocols that are outlined in the Quality Assurance Project Plan (QAPP) and QAPP Addendum were followed. Analytical results for the indoor air quality and ambient air quality samples were reported using NYSDEC Analytical Services Protocol (ASP) Category B data deliverables.

Sub-Slab Soil Vapor Sampling

The VI investigation consisted of advancing seven (7) temporary sub-slab soil vapor points (SSSV-1 through SSSV-7) through the floor slab in three (3) tenant spaces (Store 3, Store 6, and Store 8) in the shopping center that overlie the former MGP structures. The temporary sub-slab soil vapor points were drilled by ZEBRA Environmental Corp. (ZEBRA) between February 24 and March 1, 2010 under the oversight of ARCADIS in accordance with the methods and procedures described in the FSP. The approximate locations of the temporary sub-slab soil vapor points are shown on Figure 1. Sub-Slab Vapor (Canister) Sample Collection Field Forms are provided in Appendix A of this SC Data Summary Addendum.

The sub-slab soil vapor samples were submitted to the laboratory for the analysis of VOCs using EPA Method TO-15. Table 2 summarizes the sub-slab soil vapor sample analytical data. Samples were submitted to Alpha Analytical, Inc., a NYSDOH accredited laboratory certified for the analyses. The analytical methods, sample handling, and laboratory protocols that are outlined in the QAPP and QAPP Addendum were followed. Analytical results for the sub-slab soil vapor samples were reported using NYSDEC ASP Category B data deliverables.

Air monitoring was conducted inside the tenant spaces during implementation of the sub-slab soil vapor sampling activities. The air was monitored using a photoionization detector (PID), a real-time aerosol monitor, and a multi-gas meter. The air monitoring data indicate that no readings were recorded above background levels.

Nature of Constituents in Media

This section of the SC Data Summary Addendum discusses the analytical data for samples collected from indoor air and sub-slab soil vapor at the Site. The nature of the constituents is described in the following sections.

Ms. Lisa A. Gorton May 5, 2010

Summary of Data Usability

This section of the SC Data Summary Addendum provides a summary of VI Investigation data quality based on the data validation that was performed and usability toward meeting data quality objectives (DQOs) for the Site. Data Usability Summary Reports (DUSRs) are provided in Appendix C of this SC Data Summary Addendum.

ARCADIS prepared Data Validation Checklists for the sample data that was collected during the VI Investigation. The analytical data underwent a review process following NYSDEC DUSR guidelines. The analytical method (TO-15) utilized was an acceptable EPA method, as specified in the NYSDEC-approved SC Work Plan Addendum. Data validation was conducted by ARCADIS. NYSDEC ASP Category B deliverables for indoor air quality and sub-slab soil vapor analytical samples associated with the VI Investigation are provided in Appendix D of this SC Data Summary Addendum.

Three sample delivery groups (SDGs) were associated with the VI Investigation data. The data were determined to be acceptable and usable with the exception of the SSSV-4 sub-slab soil vapor sample. The final vacuum (i.e., receipt at lab vacuum) of the SSSV-4 SUMMA® canister was less than 1 inch of mercury (Hg). Based on this receipt vacuum reading, compounds that were not detected above the laboratory reported detection limit in the SSSV-4 sample were qualified as unusable ("R" qualifier [result rejected]). Compounds that were detected above the laboratory reported detection limit in the SSSV-4 sample were qualified as estimated ("J" qualifier).

It is the opinion of the data reviewer that the analytical data generated from samples collected and analyzed as part of the VI Investigation underwent a thorough data review process in accordance with QAPP requirements. Based on the data validation, the DQOs were met.

Nature of Constituents in Indoor Air

This section of the SC Data Summary Addendum provides an evaluation of the nature of constituents in indoor air. The laboratory analytical results of indoor air quality samples are summarized in Table 1 and provided in Appendix D of this SC Data Summary Addendum.

The analytical results indicate that potential MGP-related constituents detected in indoor air were below typical background indoor air concentrations for all indoor air quality samples. A number of non-MGP-related constituents detected in indoor air

Ms. Lisa A. Gorton May 5, 2010

(2-butanone [methyl ethyl ketone], dichlorodifluoromethane (Freon 12), 4-methyl-2pentanone [MIBK], and PCE) were above typical background indoor air concentrations in a number of indoor air quality samples (IA-1, IA-3, IA-5, and IA-6). PCE was detected above its typical background indoor air concentration of 15.9 μ g/m³ in the IA-5 (16.4 μ g/m³) (Store 6) and IA-6 (18.0 μ g/m³) (Store 7) indoor air quality samples.

A number of potential MGP-related constituents (e.g., benzene) and non-MGPrelated constituents (e.g., PCE) were detected in the ambient air sample (AA-1) that was collected along the sidewalk outside the shopping center.

Nature of Constituents in Sub-Slab Soil Vapor

This section of the SC Data Summary Addendum provides an evaluation of the nature of constituents in sub-slab soil vapor. The laboratory analytical results of sub-slab soil vapor samples are summarized in Table 2 and provided in Appendix D of this SC Data Summary Addendum.

The analytical results indicate that potential MGP-related constituents were detected in the majority of the sub-slab soil vapor samples. MGP site indicator compounds such as indane and indene were detected in the SSSV-1 and SSSV-2 sub-slab soil vapor samples (beneath Store 3). However, these compounds, along with thiophene, were not detected in any of the indoor air quality samples.

Non-MGP-related constituents were also detected in the sub-slab soil vapor samples. PCE and other chlorinated VOCs (TCE, cis-1,2-dichloroethene, and vinyl chloride) were detected at elevated concentrations in the SSSV-6 sample (beneath Store 8) (most notably PCE at a concentration of 606,000 μ g/m³).

Table 3 provides the analytical results for a subset of the sub-slab soil vapor and indoor air quality samples that were generally co-located within tenant spaces. The intent of this data presentation is to facilitate a comparison of chemical constituents that were detected in both sub-slab soil vapor and indoor air.

Conclusions

Based on the data presented in this SC Data Summary Addendum, potential MGPrelated constituent vapors are not migrating into the shopping center building at concentrations that may result in an unacceptable human health risk. This is evidenced by the fact that potential MGP-related constituents detected in indoor air were below typical background indoor air concentrations for all indoor air quality

Ms. Lisa A. Gorton May 5, 2010

samples. Furthermore, the potential MGP-related constituents detected in indoor air may be attributable to other sources (i.e., background sources).

Please contact Andrew Prophete of National Grid at (718) 963-5412 if you have any questions.

Sincerely,

ARCADIS of New York, Inc.

Christopher Keen Senior Scientist

Feldmon

Steven M. Feldman Principal Scientist

Copies: Albert DeMarco - NYSDOH Andrew Prophete - National Grid Donald Campbell - National Grid Tracey Bell - National Grid Linda Sullivan, Esq. - National Grid

 Table 1. Concentrations of Volatile Organic Compounds in Indoor Air Quality Samples,

 Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background Indoor Air	Sample ID: Sample Date:	IA-1 2/22/2010	IA-2 2/22/2010	DUP022210 2/22/2010	IA-3 2/22/2010
	Concentrations ¹	Sample Location:	Radio Shack	Silent Thunder	IA-2	West 5th
Compound	(ug/m ³)	·		Martial Arts	Duplicate	Medical Supply
(Units in ug/m ³)	(.	Sample Type:	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Potential MGP-Related Constituents of	or Other Sources					
1,2,3-Trimethylbenzene	-		<0.983	<0.983	<0.983 J	<0.983
1,2,4-Trimethylbenzene	9.5		<0.982	<0.982	<0.982 J	<0.982
1,2,4,5-Tetramethylbenzene	-		<13.7	<13.7	<13.7 J	<13.7
1,3,5-Trimethylbenzene	3.7		<0.982	<0.982	<0.982 J	<0.982
2,2,4-Trimethylpentane	-		0.971	< 0.934	<0.934 J	1.22
o-Chlorotoluene	-		<1.03	<1.03	<1.03 J	<1.03
4-Ethyltoluene	3.6		<0.982	<0.982	<0.982 J	<0.982
Benzene	9.4		2.11	2.04	1.85 J	1.90
Carbon disulfide	4.2		<0.622	<0.622	<0.622 J	<0.622
Cyclohexane	-		<0.688	<0.688	<0.688 J	0.767
Ethylbenzene	5.7		1.14	0.928	0.876 J	<0.868
Heptane	-		0.942	1.03	1.02 J	5.11
n-Hexane	10.2		1.76	1.87	1.80 J	8.91
p/m-Xylene	22.2		1.66	2.13	1.94 J	2.50
o-Xylene	7.9		<0.868	0.872	0.868 J	0.946
Naphthalene	5.1		<1.05	<1.05	<1.05 J	<1.05
Styrene	1.9		<0.851	<0.851	<0.851 J	<0.851
Thiophene	-		<0.688	<0.688	<0.688 J	<0.688
Toluene	43.0		8.27	9.51	9.41 J	35.7
Indane	-		< 0.967	< 0.967	<0.967 J	< 0.967
Indene	-		<0.950	<0.950	<0.950 J	<0.950
1-Methylnaphthalene	-		<14.5	<14.5	<14.5 J	<14.5
2-Methylnaphthalene			<14.5	<14.5	<14.5 J	<14.5
Non-MGP-Related Constituents			\$14.0	\$14.5	<14.00	\$14.0
1,1,1-Trichloroethane	20.6		<1.09	<1.09	<1.09 J	<1.09
1,1,2,2-Tetrachloroethane	-		<1.37	<1.37	<1.37 J	<1.37
1,1,2-Trichloroethane	- <1.5		<1.09	<1.09	<1.09 J	<1.09
	<0.7		< 0.809	<0.809	<0.809 J	< 0.809
1,1-Dichloroethane	<0.7 <1.4		<0.809 <0.792	<0.809	<0.809 J <0.792 J	<0.809
1,1-Dichloroethene	<1.4 <6.8		<0.792	<1.48	<0.792 J <1.48 J	<0.792
1,2,4-Trichlorobenzene						
1,2-Dibromoethane	<1.5		<1.54	<1.54	<1.54 J	<1.54
1,2-Dichlorobenzene	<1.2		<1.20	<1.20	<1.20 J	<1.20
1,2-Dichloroethane	<0.9		< 0.809	< 0.809	<0.809 J	<0.809
1,2-Dichloropropane	<1.6		< 0.924	<0.924	<0.924 J	<0.924
1,3-Butadiene	<3.0		<0.442	<0.442	<0.442 J	<0.442
1,3-Dichlorobenzene	<2.4		<1.20	<1.20	<1.20 J	<1.20
1,4-Dichlorobenzene	5.5		<1.20	<1.20	<1.20 J	<1.20
1,4-Dioxane			<0.720	<0.720	<0.720 J	< 0.720
2-Butanone	12.0		1.55	4.84	4.19 J	21.9
2-Hexanone	-		<0.819	<0.819	<0.819 J	<0.819
3-Chloropropene	-		<0.626	<0.626	<0.626 J	<0.626
Acetone	98.9		<2.37	22.9	18.6 J	28.6
Bromodichloromethane	-		<1.34	<1.34	<1.34 J	<1.34
Bromoform	-		<2.06	<2.06	<2.06 J	<2.06
Bromomethane	<1.7		<0.776	<0.776	<0.776 J	<0.776
Carbon tetrachloride	<1.3		<1.26	<1.26	<1.26 J	<1.26
Chlorobenzene	<0.9		<0.920	<0.920	<0.920 J	<0.920
Chloroethane	<1.1		<0.527	<0.527	<0.527 J	<0.527
Chloroform	1.1		<0.976	<0.976	<0.976 J	<0.976
Chloromethane	3.7		1.40	1.39	1.16 J	1.55
cis-1,2-Dichloroethene	<1.9		<0.792	<0.792	<0.792 J	<0.792
cis-1,3-Dichloropropene	<2.3		<0.907	<0.907	<0.907 J	<0.907
Dibromochloromethane	-		<1.70	<1.70	<1.70 J	<1.70
Dichlorodifluoromethane	16.5		25.6	3.08	3.01 J	2.92
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.5		<1.53	<1.53	<1.53 J	<1.53
1,2-Dichloro-1,1,2,2-tetrafluoroethane	<6.8		<1.40	<1.40	<1.40 J	<1.40
Hexachlorobutadiene	<6.8		<2.13	<2.13	<2.13 J	<2.13
iso-Propyl Alcohol	250.0		9.42 J	15.6 J	14.0 J	23.6 J
Methylene chloride	10.0		<1.74	<1.74	<1.74 J	<1.74
4-Methyl-2-pentanone	6.0		<0.819	1.07	0.904 J	1.26

See footnotes on next page.

Page 1 of 6

Table 1. Concentrations of Volatile Organic Compounds in Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background Indoor Air	Sample ID: Sample Date:	IA-1 2/22/2010	IA-2 2/22/2010	DUP022210 2/22/2010	IA-3 2/22/2010
	Concentrations ¹	Sample Location:	Radio Shack	Silent Thunder	IA-2	West 5th
Compound	(ug/m ³)			Martial Arts	Duplicate	Medical Supply
(Units in ug/m ³)		Sample Type:	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Non-MGP-Related Constituents	(Continued)					
Methyl tert butyl ether	11.5		<0.720	<0.720	<0.720 J	<0.720
tert-Butyl Alcohol	-		<0.606	0.688	0.715 J	<0.606
Tetrachloroethene	15.9		2.22	2.08	2.02 J	1.36
trans-1,2-Dichloroethene	-		<0.792	<0.792	<0.792 J	<0.792
trans-1,3-Dichloropropene	<1.3		<0.907	< 0.907	<0.907 J	<0.907
Trichloroethene	4.2		<1.07	<1.07	<1.07 J	<1.07
Trichlorofluoromethane	18.1		9.85	1.68	1.52 J	1.47
Vinyl bromide	-		<0.874	<0.874	<0.874 J	<0.874
Vinyl chloride	<1.9		<0.511	<0.511	<0.511 J	<0.511

1	Typical non-residential background indoor air concentrations are equal to the 90th percentile values observed by the USEPA in a study from 1994 through 1996, which are the values recommended for comparison in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006), Table C2.
ug/m ³	Micrograms per cubic meter.
-	Not available.
J	Estimated value.
Bold	Indicates detection above laboratory Reported Detection Limit.
	Compound concentration exceeds background indoor air concentration.

Page 2 of 6

 Table 1. Concentrations of Volatile Organic Compounds in Indoor Air Quality Samples,

 Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background Indoor Air	Sample ID: Sample Date:	IA-4 2/22/2010	IA-5 2/22/2010	IA-6 2/22/2010	IA-7 2/22/2010 CVS
	Concentrations ¹	Sample Location:	Eastern	Kurt Cleaners	Capital One	
Compound	(ug/m ³)		Chinese Food		Bank	Pharmacy
(Units in ug/m ³)		Sample Type:	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Potential MGP-Related Constituents of	or Other Sources					
,2,3-Trimethylbenzene	-		<0.983	1.42	<0.983	<0.983
,2,4-Trimethylbenzene	9.5		1.16	1.86	1.14	<0.982
,2,4,5-Tetramethylbenzene	-		<13.7	<13.7	<13.7	<13.7
,3,5-Trimethylbenzene	3.7		<0.982	<0.982	<0.982	<0.982
2,2,4-Trimethylpentane	-		0.990	1.08	<0.934	<0.934
o-Chlorotoluene	-		<1.03	<1.03	<1.03	<1.03
-Ethyltoluene	3.6		<0.982	1.06	<0.982	<0.982
Benzene	9.4		2.93	1.82	2.03	1.94
Carbon disulfide	4.2		<0.622	<0.622	<0.622	<0.622
Cyclohexane	-		<0.688	<0.688	0.722	<0.688
thylbenzene	5.7		<0.868	<0.868	<0.868	1.17
leptane	-		1.56	0.962	1.40	0.913
n-Hexane	10.2		2.47	3.53	1.60	0.983
o/m-Xylene	22.2		2.37	1.85	1.58	2.76
o-Xylene	7.9		0.950	<0.868	<0.868	1.14
Naphthalene	5.1		<1.05	<1.05	<1.05	<1.05
Styrene	1.9		<0.851	<0.851	<0.851	<0.851
hiophene	-		<0.688	<0.688	<0.688	<0.688
Toluene	43.0		8.94	4.91	4.30	5.31
ndane	-		<0.967	<0.967	<0.967	<0.967
ndene	-		<0.950	<0.950	<0.950	<0.950
-Methylnaphthalene	-		<14.5	<14.5	<14.5	<14.5
P-Methylnaphthalene	-		<14.5	<14.5	<14.5	<14.5
Ion-MGP-Related Constituents						
,1,1-Trichloroethane	20.6		<1.09	<1.09	<1.09	<1.09
,1,2,2-Tetrachloroethane	-		<1.37	<1.37	<1.37	<1.37
,1,2-Trichloroethane	<1.5		<1.09	<1.09	<1.09	<1.09
,1-Dichloroethane	<0.7		<0.809	<0.809	<0.809	<0.809
,1-Dichloroethene	<1.4		<0.792	<0.792	<0.792	<0.792
,2,4-Trichlorobenzene	<6.8		<1.48	<1.48	<1.48	<1.48
,2-Dibromoethane	<1.5		<1.54	<1.54	<1.54	<1.54
,2-Dichlorobenzene	<1.2		<1.20	<1.20	<1.20	<1.20
,2-Dichloroethane	<0.9		<0.809	<0.809	<0.809	<0.809
,2-Dichloropropane	<1.6		<0.924	<0.924	<0.924	<0.924
,3-Butadiene	<3.0		0.840	<0.442	<0.442	<0.442
,3-Dichlorobenzene	<2.4		<1.20	<1.20	<1.20	<1.20
,4-Dichlorobenzene	5.5		<1.20	<1.20	<1.20	<1.20
,4-Dioxane	-		<0.720	<0.720	<0.720	<0.720
2-Butanone	12.0		3.98	4.84	1.56	1.28
2-Hexanone	-		<0.819	<0.819	<0.819	<0.819
B-Chloropropene	-		<0.626	<0.626	<0.626	<0.626
Acetone	98.9		26.8	41.1	24.4	22.3
Bromodichloromethane	-		<1.34	<1.34	<1.34	<1.34
Bromoform	-		<2.06	<2.06	<2.06	<2.06
Bromomethane	<1.7		<0.776	<0.776	<0.776	<0.776
Carbon tetrachloride	<1.3		<1.26	<1.26	<1.26	<1.26
Chlorobenzene	<0.9		<0.920	<0.920	<0.920	<0.920
Chloroethane	<1.1		<0.527	<0.527	<0.527	<0.527
hloroform	1.1		<0.976	<0.976	<0.976	<0.976
Chloromethane	3.7		1.40	1.34	1.31	1.33
is-1,2-Dichloroethene	<1.9		<0.792	<0.792	<0.792	<0.792
is-1,3-Dichloropropene	<2.3		<0.907	< 0.907	< 0.907	< 0.907
Dibromochloromethane	-		<1.70	<1.70	<1.70	<1.70
Dichlorodifluoromethane	16.5		4.38	3.01	3.85	3.86
,1,2-Trichloro-1,2,2-Trifluoroethane	3.5		<1.53	<1.53	<1.53	<1.53
,2-Dichloro-1,1,2,2-tetrafluoroethane	<6.8		<1.40	<1.40	<1.40	<1.33
lexachlorobutadiene	<6.8		<2.13	<2.13	<2.13	<2.13
so-Propyl Alcohol	250.0		<2.13 25.9 J	<2.13 57.4 J	<2.13 39.0 J	<2.13 63.6 J
Aethylene chloride	10.0		1.76	<1.74	<1.74	<1.74
4-Methyl-2-pentanone	6.0		3.93	19.5	3.32	<0.819

See footnotes on next page.

Page 3 of 6

Table 1. Concentrations of Volatile Organic Compounds in Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background Indoor Air Concentrations ¹	Sample ID: Sample Date: Sample Location:	IA-4 2/22/2010 Eastern	IA-5 2/22/2010 Kurt Cleaners	IA-6 2/22/2010 Capital One	IA-7 2/22/2010 CVS
Compound	(ug/m ³)	Sample Location.	Chinese Food		Bank	Pharmacy
(Units in ug/m ³)	(dg/m)	Sample Type:	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Non-MGP-Related Constituents (Continued)					
Methyl tert butyl ether	11.5		<0.720	<0.720	<0.720	<0.720
tert-Butyl Alcohol	-		0.788	0.624	<0.606	<0.606
Tetrachloroethene	15.9		6.08	16.4	18.0	10.4
trans-1,2-Dichloroethene	-		<0.792	<0.792	<0.792	<0.792
trans-1,3-Dichloropropene	<1.3		< 0.907	< 0.907	<0.907	<0.907
Trichloroethene	4.2		<1.07	1.43	<1.07	<1.07
Trichlorofluoromethane	18.1		2.09	1.60	1.89	1.99
Vinyl bromide	-		<0.874	<0.874	<0.874	<0.874
Vinyl chloride	<1.9		<0.511	<0.511	<0.511	<0.511

1	Typical non-residential background indoor air concentrations are equal to the 90th percentile values observed by the USEPA in a study from 1994
	through 1996, which are the values recommended for comparison in the
	NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of
	New York" (NYSDOH, October 2006), Table C2.
ug/m ³	Micrograms per cubic meter.
-	Not available.
J	Estimated value.
Bold	Indicates detection above laboratory Reported Detection Limit.
	Compound concentration exceeds background indoor air concentration.

Page 4 of 6

 Table 1. Concentrations of Volatile Organic Compounds in Indoor Air Quality Samples,

 Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background	Sample ID:	AA-1	
	Indoor Air	Sample Date:	2/22/2010	
	Concentrations ¹	Sample Location:	Parking Lot	
Compound	(ug/m ³)	o		
(Units in ug/m ³)		Sample Type:	Ambient Air	
Potential MGP-Related Constituents of	or Other Sources			
1,2,3-Trimethylbenzene	-		<0.983	
1,2,4-Trimethylbenzene	9.5		<0.982	
1,2,4,5-Tetramethylbenzene	-		<13.7	
1,3,5-Trimethylbenzene	3.7		<0.982	
2,2,4-Trimethylpentane	-		<0.934	
o-Chlorotoluene	-		<1.03	
4-Ethyltoluene	3.6		<0.982	
Benzene	9.4		1.85	
Carbon disulfide	4.2		<0.622	
Cyclohexane			<0.688	
Ethylbenzene	5.7		<0.868	
Heptane	-		<0.819	
n-Hexane	10.2		0.905	
p/m-Xylene	22.2		1.61 <0.868	
o-Xylene	7.9 5.1		<0.868 <1.05	
Naphthalene	5.1 1.9			
Styrene	-		<0.851 <0.688	
Thiophene Toluene	43.0		<0.686	
Indane	43.0 -		<0.967	
Indene	-		<0.950	
1-Methylnaphthalene	-		<14.5	
2-Methylnaphthalene	-		<14.5	
Non-MGP-Related Constituents				
1,1,1-Trichloroethane	20.6		<1.09	
1,1,2,2-Tetrachloroethane	-		<1.37	
1,1,2-Trichloroethane	<1.5		<1.09	
1,1-Dichloroethane	<0.7		<0.809	
1,1-Dichloroethene	<1.4		<0.792	
1,2,4-Trichlorobenzene	<6.8		<1.48	
1,2-Dibromoethane	<1.5		<1.54	
1,2-Dichlorobenzene	<1.2		<1.20	
1,2-Dichloroethane	<0.9		<0.809	
1,2-Dichloropropane	<1.6		<0.924	
1,3-Butadiene	<3.0		<0.442	
1,3-Dichlorobenzene	<2.4		<1.20	
1,4-Dichlorobenzene	5.5		<1.20	
1,4-Dioxane	-		< 0.720	
2-Butanone	12.0		0.695	
2-Hexanone 3-Chloropropene	-		<0.819 <0.626	
Acetone	- 98.9		<0.626 4.48	
Bromodichloromethane	- -		<1.34	
Bromoform	-		<2.06	
Bromomethane	<1.7		<0.776	
Carbon tetrachloride	<1.3		<1.26	
Chlorobenzene	<0.9		<0.920	
Chloroethane	<1.1		<0.527	
Chloroform	1.1		<0.976	
Chloromethane	3.7		1.18	
cis-1,2-Dichloroethene	<1.9		<0.792	
cis-1,3-Dichloropropene	<2.3		<0.907	
Dibromochloromethane	-		<1.70	
Dichlorodifluoromethane	16.5		2.64	
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.5		<1.53	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	<6.8		<1.40	
Hexachlorobutadiene	<6.8		<2.13	
iso-Propyl Alcohol	250.0		1.58 J	
Methylene chloride	10.0		<1.74	
4-Methyl-2-pentanone	6.0		<0.819	

See footnotes on next page.

Page 5 of 6

Table 1. Concentrations of Volatile Organic Compounds in Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background Indoor Air	Sample ID: Sample Date:	AA-1 2/22/2010
	Concentrations ¹	Sample Location:	Parking Lot
Compound	(ug/m ³)	•	0
(Units in ug/m ³)		Sample Type:	Ambient Air
Non-MGP-Related Constituents	(Continued)		
Methyl tert butyl ether	11.5		<0.720
tert-Butyl Alcohol	-		<0.606
Tetrachloroethene	15.9		2.14
trans-1,2-Dichloroethene	-		<0.792
trans-1,3-Dichloropropene	<1.3		<0.907
Trichloroethene	4.2		<1.07
Trichlorofluoromethane	18.1		1.34
Vinyl bromide	-		<0.874
Vinyl chloride	<1.9		<0.511

1	Typical non-residential background indoor air concentrations are equal to the 90th percentile values observed by the USEPA in a study from 1994
	through 1996, which are the values recommended for comparison in the
	NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of
	New York" (NYSDOH, October 2006), Table C2.
ug/m ³	Micrograms per cubic meter.
-	Not available.
J	Estimated value.
Bold	Indicates detection above laboratory Reported Detection Limit.
	Compound concentration exceeds background indoor air concentration.

Page 6 of 6

Compound (Units in ug/m ³)	Sample ID: Sample Date: Sample Location: Sample Type:	SSSV-1 2/25/2010 Silent Thunder Martial Arts Sub-Slab	DUP022510 2/25/2010 SSSV-1 Duplicate Sub-Slab	SSSV-2 2/25/2010 Silent Thunder Martial Arts Sub-Slab	SSSV-3 2/24/2010 Kurt Cleaners Sub-Slab	SSSV-4 ² 2/24/2010 Kurt Cleaners Sub-Slab
()						
Potential MGP-Related Constituents or Oth	er Sources	0.74	.4.02	.4.02	.4.02	R
1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene		2.71 5.59	<4.92 <4.91	<4.92 <4.91	<4.92 <4.91	к 5.28 J
1,2,4,5-Tetramethylbenzene		<13.7 J	<4.91 <68.6 J	<4.91 <68.6 J	<68.6 J	5.26 J R
1,3,5-Trimethylbenzene		1.40 J	<4.91 J	<4.91	<4.91	R
2,2,4-Trimethylpentane		2.27	<4.67	<4.67	<4.67	R
o-Chlorotoluene		<1.03	<5.17	<5.17	<5.17	R
4-Ethyltoluene		1.51 J	<4.91 J	<4.91	<4.91	R
Benzene		114	104	<3.19	92.0	3.99 J
Carbon disulfide		2.95	<3.11	3.17	6.47	R
Cyclohexane		2.58	<3.44	<3.44	<3.44	8.36 J
Ethylbenzene		5.04	<4.34	<4.34	<4.34	R
Heptane		11.0	9.36	4.12	9.42	11.3 J
n-Hexane		19.5	19.1	7.61	13.3	14.3 J
p/m-Xylene		13.0 J	9.13 J	<4.34	4.75	8.74 J
o-Xylene		7.34	5.16	<4.34	<4.34	R
Naphthalene Styrene		18.3 J	10.7 J	27.0	<5.24	R R
Thiophene		4.23 <0.688	<4.26 <3.44	<4.26 <3.44	<4.26 <3.44	R
Toluene		<0.000 60.8	47.1	7.10	12.3	8.58 J
Indane		5.29	<4.83	7.49	<4.83	0.30 3 R
Indene		11.7 J	6.01 J	<4.75	<4.75	R
1-Methylnaphthalene		<14.5	<72.7	<72.7	<72.7	R
2-Methylnaphthalene		<14.5 J	<72.7 J	<72.7 J	<72.7 J	R
Non-MGP-Related Constituents						
1,1,1-Trichloroethane		<1.09	<5.45	<5.45	<5.45	R
1,1,2,2-Tetrachloroethane		<1.37	<6.86	<6.86	<6.86	R
1,1,2-Trichloroethane		<1.09	<5.45	<5.45	<5.45	R
1,1-Dichloroethane		<0.809	<4.04	<4.04	<4.04	R
1,1-Dichloroethene		<0.792	<3.96	<3.96	<3.96	R
1,2,4-Trichlorobenzene		<1.48 J	<7.42 J	<7.42 J	<7.42 J	R
1,2-Dibromoethane		<1.54	<7.68	<7.68	<7.68	R
1,2-Dichlorobenzene		<1.20	<6.01	<6.01	<6.01	R
1,2-Dichloroethane		<0.809 <0.924	<4.04	<4.04	<4.04	R R
1,2-Dichloropropane 1,3-Butadiene		<0.924 1.49	<4.62 <2.21	<4.62 2.41	<4.62 14.0	4.64 J
1,3-Dichlorobenzene		<1.20	<6.01	<6.01	<6.01	4.04 J R
1,4-Dichlorobenzene		1.27 J	<6.01 J	<6.01	<6.01	R
1,4-Dioxane		<0.72	<3.60	<3.60	<3.60	R
2-Butanone		30.4	24.7	14.1	37.7	18.7 J
2-Hexanone		3.33	<4.10	<4.10	8.42	R
3-Chloropropene		<0.626	<3.13	<3.13	<3.13	R
Acetone		111	93.7	58.7	152	53.6 J
Bromodichloromethane		<1.34	<6.70	<6.70	<6.70	R
Bromoform		<2.06	<10.3	<10.3	<10.3	R
Bromomethane		<0.776	<3.88	<3.88	<3.88	R
Carbon tetrachloride		<1.26	<6.29	<6.29	<6.29	R
Chlorobenzene		< 0.92	<4.60	<4.60	<4.60	R
Chloroethane		<0.527	<2.64	<2.64	<2.64	R
Chloroform Chloromethane		<0.976 1.61	<4.88 <2.06	<4.88 <2.06	<4.88 4.32	R R
cis-1,2-Dichloroethene		<0.792	<2.06 <3.96	<2.06 <3.96	4.32 <3.96	R
cis-1,3-Dichloropropene		<0.907	<4.53	<4.53	<4.53	R
Dibromochloromethane		<1.70	<8.51	<8.51	<8.51	R
Dichlorodifluoromethane		2.36	<4.94	<4.94	7.96	R
1,1,2-Trichloro-1,2,2-Trifluoroethane		<1.53	<7.66	<7.66	<7.66	R
1,2-Dichloro-1,1,2,2-tetrafluoroethane		<1.40	<6.98	<6.98	<6.98	R
Hexachlorobutadiene		<2.13	<10.6	<10.6	<10.6	R
iso-Propyl Alcohol		11.5 J	10.5 J	<6.14 J	23.2 J	6.83 J
Methylene chloride		<1.74	<8.68	<8.68	<8.68	R
4-Methyl-2-pentanone		2.03	<4.09	<4.09	5.81	6.61 J

See footnotes on next page.

Compound (Units in ug/m ³)	Sample ID: Sample Date: Sample Location: Sample Type:	2/25/2010 Silent Thunder Martial Arts	DUP022510 2/25/2010 SSSV-1 Duplicate Sub-Slab	SSSV-2 2/25/2010 Silent Thunder Martial Arts Sub-Slab	SSSV-3 2/24/2010 Kurt Cleaners Sub-Slab	SSSV-4 ² 2/24/2010 Kurt Cleaners Sub-Slab
Non-MGP-Related Constituents (Continued)						
Methyl tert butyl ether		<0.72	<3.60	<3.60	<3.60	R
tert-Butyl Alcohol		2.06	<3.03	<3.03	5.56	R
Tetrachloroethene		37.6	34.2	8.47	39.9	306 J
trans-1,2-Dichloroethene		<0.792	<3.96	<3.96	<3.96	R
trans-1,3-Dichloropropene		<0.907	<4.53	<4.53	<4.53	R
Trichloroethene		<1.07	<5.37	<5.37	<5.37	R
Trichlorofluoromethane		1.32	<5.61	<5.61	<5.61	R
Vinyl bromide		<0.874	<4.37	<4.37	<4.37	R
Vinyl chloride		<0.511	<2.55	<2.55	<2.55	R

2 R qualifier applied only to Non-Detect compounds. ug/m³ Micrograms per cubic meter. D J Compound quantitated at a secondary dilution.

Estimated value.

R Result rejected.

Bold Indicates detection above laboratory Reported Detection Limit.

	Sample ID:	SSSV-5	SSSV-6	SSSV-7	
	Sample Date:	3/1/2010	3/1/2010	3/1/2010	
	Sample Location:	CVS	CVS	CVS	
Compound		Pharmacy	Pharmacy	Pharmacy	
Units in ug/m ³)	Sample Type:	Sub-Slab	Sub-Slab	Sub-Slab	
Potential MGP-Related Constituents or Other S	Sources				
,2,3-Trimethylbenzene		<9.83	<224	<1.97	
,2,4-Trimethylbenzene		<9.82	<224	<1.96	
1,2,4,5-Tetramethylbenzene		<137 J	<3,120 J	<27.4 J	
I,3,5-Trimethylbenzene		<9.82	<224	<1.96	
2,2,4-Trimethylpentane		<9.34	<212	<1.87	
p-Chlorotoluene		<10.3	<236	<2.07	
1-Ethyltoluene		<9.82	<224	<1.96	
Benzene		52.4	<145	<1.30	
Carbon disulfide		9.61	<145	<1.26	
		531	<157	<1.38	
thylbenzene		<8.68	<198	<1.74	
leptane		401	<186	1.98	
n-Hexane		1,420	<160	7.04	
p/m-Xylene		<8.68	<198	<1.74	
p-Xylene		<8.68	<198	<1.74	
Naphthalene		12.4	<238	<2.10	
Styrene		<8.51	<194	42.9	
Thiophene		<6.88	<157	<1.38	
Foluene		10.6	<171	<1.51	
ndane		<9.67	<220	<1.93	
ndene		<9.50	<216	<1.90	
-Methylnaphthalene		<145	<3,310	<29.1	
P-Methylnaphthalene		<145 J	<3,310 J	<29.1 J	
Non-MGP-Related Constituents			,		
,1,1-Trichloroethane		<10.9	<248	<2.18	
,1,2,2-Tetrachloroethane		<13.7	<312	<2.74	
,1,2-Trichloroethane		<10.9	<248	<2.18	
,1-Dichloroethane		<8.09	<184	<1.62	
,1-Dichloroethene		<7.92	<180	<1.58	
,2,4-Trichlorobenzene		<14.8 J	<338 J	<2.97 J	
,2-Dibromoethane		<15.4	<350	<3.07	
I,2-Dichlorobenzene		<12.0	<274	<2.40	
I,2-Dichloroethane		<8.09	<184	<1.62	
I,2-Dichloropropane		<9.24	<210	<1.85	
,3-Butadiene		<4.42	<101	<0.884	
,3-Dichlorobenzene		<12.0	<274	<2.40	
,4-Dichlorobenzene		<12.0	<274	<2.40	
,4-Dioxane		<7.20	<164	<1.44	
2-Butanone		73.4	<134	4.89	
2-Hexanone		<8.19	<186	<1.64	
B-Chloropropene		<6.26	<142	<1.25	
Acetone		<0.20 191	<540	13.4	
Bromodichloromethane		<13.4	<305	<2.68	
Bromoform		<20.6	<305 <470	<4.13	
Bromomethane		<7.76	<177	<1.55	
Carbon tetrachloride		<12.6	<286	<2.51	
Chlorobenzene		<9.20	<209	<1.84	
Chloroethane		<5.27	<120	<1.05	
Chloroform		<9.76	<222	7.80	
Chloromethane		<4.13	<94	<0.825	
is-1,2-Dichloroethene		<7.92	1,700	<1.58	
is-1,3-Dichloropropene		<9.07	<206	<1.81	
Dibromochloromethane		<17.0	<388	3.44	
Dichlorodifluoromethane		<9.88	<225	2.21	
,1,2-Trichloro-1,2,2-Trifluoroethane		<15.3	<349	<3.06	
I,2-Dichloro-1,1,2,2-tetrafluoroethane		<14.0	<318	<2.79	
Hexachlorobutadiene		<21.3	<485	<4.26	
so-Propyl Alcohol		<12.3 J	<280 J	<2.46 J	
		~12.00		~2.70 0	
Methylene chloride		21.2	<395	<3.47	

See footnotes on next page.

	Sample ID: Sample Date:	SSSV-5 3/1/2010	SSSV-6 3/1/2010	SSSV-7 3/1/2010
Compound	Sample Location:	CVS Pharmacy	CVS Pharmacy	CVS Pharmacy
(Units in ug/m ³)	Sample Type:	Sub-Slab	Sub-Slab	Sub-Slab
Non-MGP-Related Constituents (Continued)				
Methyl tert butyl ether		<7.20	<164	<1.44
tert-Butyl Alcohol		<6.06	<138	<1.21
Tetrachloroethene		<13.6	606,000 D	38.4
trans-1,2-Dichloroethene		<7.92	<180	<1.58
trans-1,3-Dichloropropene		<9.07	<206	<1.81
Trichloroethene		<10.7	28,000	<2.15
Trichlorofluoromethane		<11.2	<256	2.26
Vinyl bromide		<8.74	<199	<1.75
Vinyl chloride		<5.11	210	<1.02

2 R qualifier applied only to Non-Detect compounds. ug/m³ Micrograms per cubic meter. D J Compound quantitated at a secondary dilution. Estimated value. R Result rejected. Bold

Indicates detection above laboratory Reported Detection Limit.

Table 3. Concentrations of Volatile Organic Compounds in Generally Co-Located Sub-Slab Soil Vapor Samples and Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background		Silent	Silent Thunder Martial Arts		
	Indoor Air	Somela ID:		SSSV 2	14.0	
Companyad	Concentrations ¹	Sample ID:	SSSV-1	SSSV-2	IA-2	
Compound	(ug/m ³)	Sample Date:	2/25/2010	2/25/2010	2/22/2010	
Units in ug/m³)		Sample Type:	Sub-Slab	Sub-Slab	Indoor Air	
otential MGP-Related Constituents o	r Other Sources					
,2,3-Trimethylbenzene	-		2.71	<4.92	<0.983	
,2,4-Trimethylbenzene	9.5		5.59	<4.91	<0.982	
,2,4,5-Tetramethylbenzene	-		<13.7 J	<68.6 J	<13.7	
,3,5-Trimethylbenzene	3.7		1.40 J	<4.91	<0.982	
,2,4-Trimethylpentane	-		2.27	<4.67	<0.934	
Chlorotoluene	-		<1.03	<5.17	<1.03	
Ethyltoluene	3.6		1.51 J	<4.91	<0.982	
enzene	9.4		114	<3.19	2.04	
arbon disulfide	4.2		2.95	3.17	<0.622	
yclohexane	-		2.58	<3.44	<0.688	
thylbenzene	5.7		5.04	<4.34	0.928	
eptane	-		11.0	4.12	1.03	
Hexane	10.2		19.5	7.61	1.87	
/m-Xylene	22.2		13.0 J	<4.34	2.13	
-Xylene	7.9		7.34	<4.34	0.872	
aphthalene	5.1		18.3 J	27.0	<1.05	
tyrene	1.9		4.23	<4.26	<0.851	
	-		4.23 <0.688	<4.26 <3.44		
hiophene oluene					<0.688	
	43.0		60.8	7.10	9.51	
ndane	-		5.29	7.49	<0.967	
idene	-		11.7 J	<4.75	<0.950	
Methylnaphthalene	-		<14.5	<72.7	<14.5	
Methylnaphthalene	-		<14.5 J	<72.7 J	<14.5	
on-MGP-Related Constituents						
1,1-Trichloroethane	20.6		<1.09	<5.45	<1.09	
1,2,2-Tetrachloroethane	-		<1.37	<6.86	<1.37	
1,2-Trichloroethane	<1.5		<1.09	<5.45	<1.09	
1-Dichloroethane	<0.7		<0.809	<4.04	<0.809	
1-Dichloroethene	<1.4		<0.792	<3.96	<0.792	
2,4-Trichlorobenzene	<6.8		<1.48 J	<7.42 J	<1.48	
2-Dibromoethane	<1.5		<1.54	<7.68	<1.54	
,2-Dichlorobenzene	<1.2		<1.20	<6.01	<1.20	
2-Dichloroethane	<0.9		< 0.809	<4.04	<0.809	
,2-Dichloropropane	<1.6		<0.924	<4.62	<0.924	
3-Butadiene	<3.0		1.49	2.41	<0.442	
,3-Dichlorobenzene	<2.4		<1.20	<6.01	<1.20	
.4-Dichlorobenzene	<2.4 5.5		<1.20 1.27 J	<6.01	<1.20	
	0.0 -		<0.72	<6.01 <3.60		
4-Dioxane					<0.720	
Butanone	12.0		30.4	14.1	4.84	
-Hexanone	-		3.33	<4.10	<0.819	
Chloropropene	-		<0.626	<3.13	<0.626	
cetone	98.9		111	58.7	22.9	
romodichloromethane	-		<1.34	<6.70	<1.34	
romoform	-		<2.06	<10.3	<2.06	
romomethane	<1.7		<0.776	<3.88	<0.776	
arbon tetrachloride	<1.3		<1.26	<6.29	<1.26	
hlorobenzene	<0.9		<0.92	<4.60	<0.920	
hloroethane	<1.1		<0.527	<2.64	<0.527	
hloroform	1.1		<0.976	<4.88	<0.976	
hloromethane	3.7		1.61	<2.06	1.39	
s-1,2-Dichloroethene	<1.9		<0.792	<3.96	<0.792	
s-1,3-Dichloropropene	<2.3		<0.907	<4.53	<0.907	
ibromochloromethane	-		<1.70	<8.51	<1.70	
ichlorodifluoromethane	16.5		2.36	<4.94	3.08	
1,2-Trichloro-1,2,2-Trifluoroethane	3.5		<1.53	<7.66	<1.53	
2-Dichloro-1,1,2,2-tetrafluoroethane	<6.8		<1.40	<6.98	<1.40	
exachlorobutadiene	<6.8		<2.13	<10.6	<2.13	
o-Propyl Alcohol	250.0		11.5 J	<6.14 J	15.6 J	
lethylene chloride	10.0		<1.74	<8.68	<1.74	

See footnotes on next page.

Table 3. Concentrations of Volatile Organic Compounds in Generally Co-Located Sub-Slab Soil Vapor Samples and Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

			Silent	Thunder Marti	al Arts
Compound (Units in ug/m³)	Typical Background Indoor Air Concentrations ¹ (ug/m ³)	Sample ID: Sample Date: Sample Type:	SSSV-1 2/25/2010 Sub-Slab	SSSV-2 2/25/2010 Sub-Slab	IA-2 2/22/2010 Indoor Air
Non-MGP-Related Constituents (Continued)				
4-Methyl-2-pentanone	6.0		2.03	<4.09	1.07
Methyl tert butyl ether	11.5		<0.72	<3.60	<0.720
tert-Butyl Alcohol	-		2.06	<3.03	0.688
Tetrachloroethene	15.9		37.6	8.47	2.08
trans-1,2-Dichloroethene	-		<0.792	<3.96	<0.792
trans-1,3-Dichloropropene	<1.3		<0.907	<4.53	<0.907
Trichloroethene	4.2		<1.07	<5.37	<1.07
Trichlorofluoromethane	18.1		1.32	<5.61	1.68
Vinyl bromide	-		<0.874	<4.37	<0.874
Vinyl chloride	<1.9		<0.511	<2.55	<0.511

1	Typical non-residential background indoor air concentrations are equal to the 90th percentile values observed by the USEPA in a study from 1994 through 1996, which are the values recommended for comparison in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006), Table C2.
2	R qualifier applied only to Non-Detect compounds.
ug/m ³	Micrograms per cubic meter.
D	Compound quantitated at a secondary dilution.
J	Estimated value.
R	Result rejected.
Bold	Indicates detection above laboratory Reported Detection Limit.
	Compound concentration exceeds background indoor air concentration.

Table 3. Concentrations of Volatile Organic Compounds in Generally Co-Located Sub-Slab Soil Vapor Samples and Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

	Typical Background			Kurt Cleaners	
	Indoor Air				
	Concentrations ¹	Sample ID:	SSSV-3	SSSV-4 ²	IA-5
Compound	(ug/m ³)	Sample Date:	2/24/2010	2/24/2010	2/22/2010
(Units in ug/m ³)		Sample Type:	Sub-Slab	Sub-Slab	Indoor Air
Potential MGP-Related Constituents of	or Other Sources				
,2,3-Trimethylbenzene	-		<4.92	R	1.42
1,2,4-Trimethylbenzene	9.5		<4.91	5.28 J	1.86
,2,4,5-Tetramethylbenzene	-		<68.6 J	R	<13.7
,3,5-Trimethylbenzene	3.7		<4.91	R	<0.982
2,2,4-Trimethylpentane	-		<4.67	R	1.08
-Chlorotoluene	-		<5.17	R	<1.03
-Ethyltoluene	3.6		<4.91	R	1.06
Benzene	9.4		92.0	3.99 J	1.82
Carbon disulfide	4.2		6.47	R	<0.622
cyclohexane	-		<3.44	8.36 J	<0.688
thylbenzene	5.7		<4.34	R	<0.868
leptane	-		9.42	11.3 J	0.962
-Hexane	10.2		13.3	14.3 J	3.53
/m-Xylene	22.2		4.75	8.74 J	1.85
p-Xylene	7.9		<4.34	8.74 J R	<0.868
laphthalene	5.1		<4.34 <5.24	R	<0.000
Styrene	5.1 1.9		<5.24 <4.26	R	<0.851
•	-				
hiophene			<3.44	R 8.58 J	<0.688
oluene	43.0		12.3		4.91
ndane	-		<4.83	R	<0.967
ndene	-		<4.75	R	<0.950
-Methylnaphthalene	-		<72.7	R	<14.5
-Methylnaphthalene	-		<72.7 J	R	<14.5
Ion-MGP-Related Constituents				_	
,1,1-Trichloroethane	20.6		<5.45	R	<1.09
,1,2,2-Tetrachloroethane	-		<6.86	R	<1.37
,1,2-Trichloroethane	<1.5		<5.45	R	<1.09
,1-Dichloroethane	<0.7		<4.04	R	<0.809
,1-Dichloroethene	<1.4		<3.96	R	<0.792
,2,4-Trichlorobenzene	<6.8		<7.42 J	R	<1.48
,2-Dibromoethane	<1.5		<7.68	R	<1.54
,2-Dichlorobenzene	<1.2		<6.01	R	<1.20
,2-Dichloroethane	<0.9		<4.04	R	<0.809
,2-Dichloropropane	<1.6		<4.62	R	<0.924
,3-Butadiene	<3.0		14.0	4.64 J	<0.442
,3-Dichlorobenzene	<2.4		<6.01	R	<1.20
,4-Dichlorobenzene	5.5		<6.01	R	<1.20
,4-Dioxane	-		<3.60	R	<0.720
-Butanone	12.0		37.7	18.7 J	4.84
-Hexanone	-		8.42	R	<0.819
-Chloropropene	-		<3.13	R	<0.626
cetone	98.9		152	53.6 J	41.1
romodichloromethane	-		<6.70	R	<1.34
romoform	-		<10.3	R	<2.06
romomethane	<1.7		<3.88	R	<0.776
arbon tetrachloride	<1.7		< 3.00	R	<1.26
hlorobenzene	<0.9		<0.29 <4.60	R	<0.920
hloroethane	<0.9 <1.1		<4.60 <2.64	R	<0.920
hloroform	1.1		<4.88	R	< 0.976
hloromethane	3.7		4.32	R	1.34
s-1,2-Dichloroethene	<1.9		<3.96	R	<0.792
s-1,3-Dichloropropene	<2.3		<4.53	R	<0.907
ibromochloromethane	-		<8.51	R	<1.70
ichlorodifluoromethane	16.5		7.96	R	3.01
,1,2-Trichloro-1,2,2-Trifluoroethane	3.5		<7.66	R	<1.53
,2-Dichloro-1,1,2,2-tetrafluoroethane	<6.8		<6.98	R	<1.40
exachlorobutadiene	<6.8		<10.6	R	<2.13
o-Propyl Alcohol	250.0		23.2 J	6.83 J	57.4 J
lethylene chloride	10.0		<8.68	R	<1.74

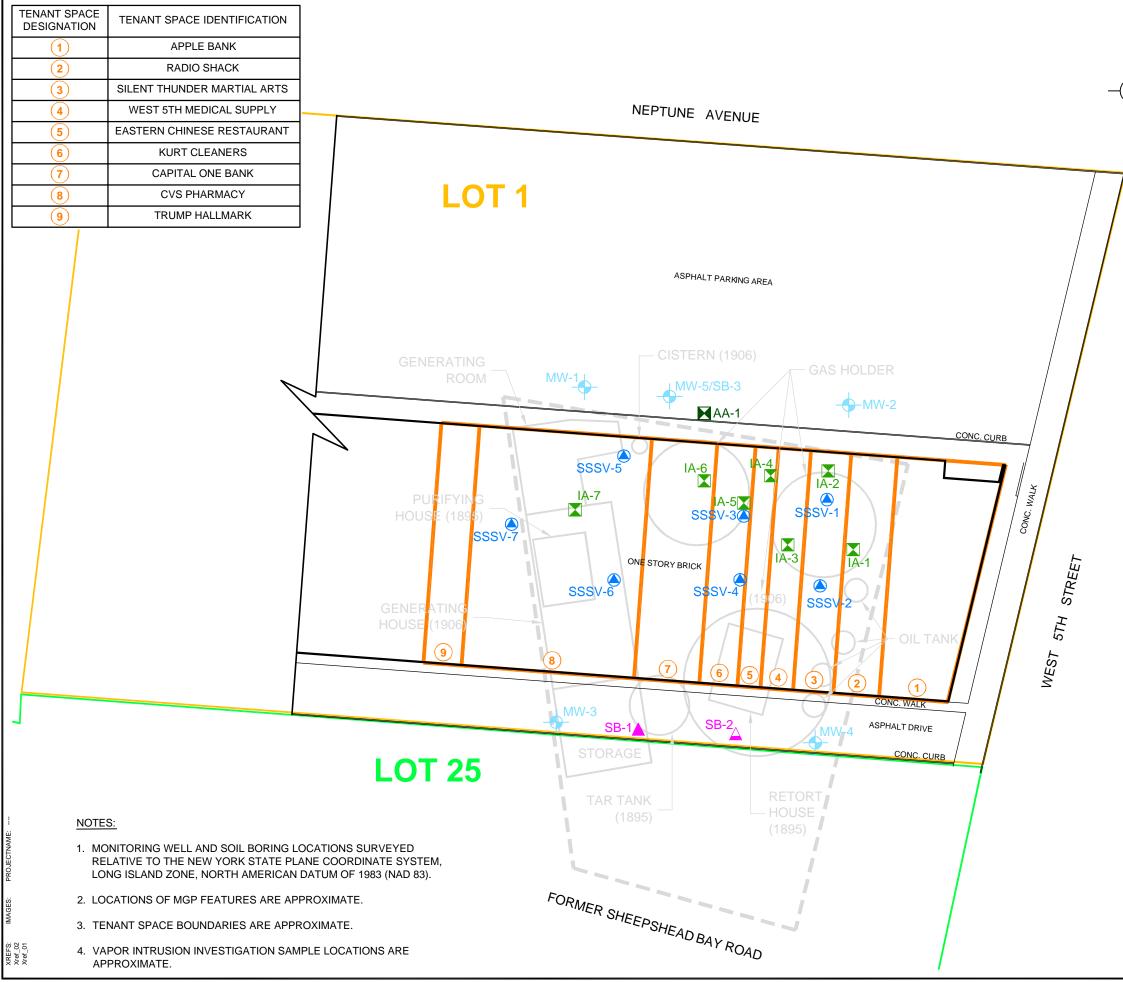
See footnotes on next page.

Table 3. Concentrations of Volatile Organic Compounds in Generally Co-Located Sub-Slab Soil Vapor Samples and Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

				Kurt Cleaners	
Compound (Units in ug/m³)	Typical Background Indoor Air Concentrations ¹ (ug/m ³)	Sample ID: Sample Date: Sample Type:	SSSV-3 2/24/2010 Sub-Slab	SSSV-4 ² 2/24/2010 Sub-Slab	IA-5 2/22/2010 Indoor Air
Non-MGP-Related Constituents (Continued)				
4-Methyl-2-pentanone	6.0		5.81	6.61 J	19.5
Methyl tert butyl ether	11.5		<3.60	R	<0.720
tert-Butyl Alcohol	-		5.56	R	0.624
Tetrachloroethene	15.9		39.9	306 J	16.4
trans-1,2-Dichloroethene	-		<3.96	R	<0.792
trans-1,3-Dichloropropene	<1.3		<4.53	R	<0.907
Trichloroethene	4.2		<5.37	R	1.43
Trichlorofluoromethane	18.1		<5.61	R	1.60
Vinyl bromide	-		<4.37	R	<0.874
Vinyl chloride	<1.9		<2.55	R	<0.511

1	Typical non-residential background indoor air concentrations are equal to the 90th percentile values observed by the USEPA in a study from 1994 through 1996, which are the values recommended for comparison in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006), Table C2.
2	R qualifier applied only to Non-Detect compounds.
ug/m ³	Micrograms per cubic meter.
D	Compound quantitated at a secondary dilution.
J	Estimated value.
R	Result rejected.
Bold	Indicates detection above laboratory Reported Detection Limit.
	Compound concentration exceeds background indoor air concentration.

Table 3. Concentrations of Volatile Organic Compounds in Generally Co-Located Sub-Slab Soil Vapor Samples and Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

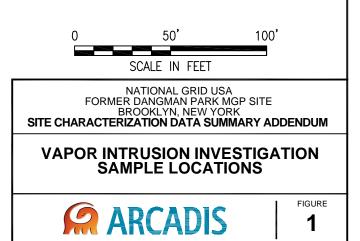

	Typical Background	_	CVS Pharmacy				
Compound	Indoor Air Concentrations ¹ (ug/m ³)	Sample ID: Sample Date:	SSSV-5 3/1/2010	SSSV-6 3/1/2010	SSSV-7 3/1/2010	IA-7 2/22/2010	
(Units in ug/m ³)		Sample Type:	Sub-Slab	Sub-Slab	Sub-Slab	Indoor Air	
Potential MGP-Related Constituents of	r Other Sources						
1,2,3-Trimethylbenzene	-		<9.83	<224	<1.97	<0.983	
1,2,4-Trimethylbenzene	9.5		<9.82	<224	<1.96	<0.982	
1,2,4,5-Tetramethylbenzene	-		<137 J	<3,120 J	<27.4 J	<13.7	
1,3,5-Trimethylbenzene	3.7		<9.82	<224	<1.96	< 0.982	
2,2,4-Trimethylpentane	-		< 9.34	<212	<1.87	< 0.934	
o-Chlorotoluene	-		<10.3	<236	<2.07	<1.03	
4-Ethyltoluene	3.6		< 9.82	<224	<1.96	<0.982	
Benzene	9.4 4.2		52.4 9.61	<145 <142	<1.28	1.94	
Carbon disulfide	4.2		531	<142 <157	<1.24 <1.38	<0.622 <0.688	
Cyclohexane Ethylbenzene	- 5.7		<8.68	<157	<1.30	<0.666 1.17	
Heptane	-		<0.00 401	<186	1.98	0.913	
n-Hexane	10.2		1,420	<160	7.04	0.913	
p/m-Xylene	22.2		<8.68	<100	<1.74	2.76	
o-Xylene	7.9		<0.00 <8.68	<198	<1.74	1.14	
Naphthalene	5.1		<0.00 12.4	<238	<2.10	<1.05	
Styrene	1.9		<8.51	<238 <194	42.10 42.9	< 0.851	
Thiophene	-		<6.88	<157	<1.38	<0.688	
Toluene	43.0		10.6	<171	<1.50	5.31	
Indane			<9.67	<220	<1.93	< 0.967	
Indene	-		<9.50	<216	<1.90	<0.950	
1-Methylnaphthalene	_		<145	<3,310	<29.1	<14.5	
2-Methylnaphthalene	_		<145 J	<3,310 J	<29.1 J	<14.5	
Non-MGP-Related Constituents				\$0,010 0	\$20.10	\$11.0	
1,1,1-Trichloroethane	20.6		<10.9	<248	<2.18	<1.09	
1,1,2,2-Tetrachloroethane	-		<13.7	<312	<2.74	<1.37	
1,1,2-Trichloroethane	<1.5		<10.9	<248	<2.18	<1.09	
1,1-Dichloroethane	<0.7		<8.09	<184	<1.62	<0.809	
1,1-Dichloroethene	<1.4		<7.92	<180	<1.58	<0.792	
1,2,4-Trichlorobenzene	<6.8		<14.8 J	<338 J	<2.97 J	<1.48	
1,2-Dibromoethane	<1.5		<15.4	<350	<3.07	<1.54	
1,2-Dichlorobenzene	<1.2		<12.0	<274	<2.40	<1.20	
1,2-Dichloroethane	<0.9		<8.09	<184	<1.62	<0.809	
1,2-Dichloropropane	<1.6		<9.24	<210	<1.85	<0.924	
1,3-Butadiene	<3.0		<4.42	<101	<0.884	<0.442	
1,3-Dichlorobenzene	<2.4		<12.0	<274	<2.40	<1.20	
1,4-Dichlorobenzene	5.5		<12.0	<274	<2.40	<1.20	
1,4-Dioxane	-		<7.20	<164	<1.44	<0.720	
2-Butanone	12.0		73.4	<134	4.89	1.28	
2-Hexanone	-		<8.19	<186	<1.64	<0.819	
3-Chloropropene			<6.26	<142	<1.25	<0.626	
Acetone	98.9		191	<540	13.4	22.3	
Bromodichloromethane	-		<13.4	<305	<2.68	<1.34	
Bromoform	-		<20.6	<470	<4.13	<2.06	
Bromomethane	<1.7		<7.76	<177	<1.55	<0.776	
Carbon tetrachloride	<1.3		<12.6	<286	<2.51	<1.26	
Chlorobenzene	<0.9		<9.20	<209	<1.84	<0.920	
Chloroethane	<1.1		<5.27	<120	<1.05	<0.527	
Chloroform	1.1		<9.76	<222	7.80	<0.976	
Chloromethane	3.7		<4.13	<94	<0.825	1.33	
cis-1,2-Dichloroethene	<1.9		<7.92	1,700	<1.58	<0.792	
cis-1,3-Dichloropropene	<2.3		<9.07	<206	<1.81	<0.907	
Dibromochloromethane	-		<17.0	<388	3.44	<1.70	
Dichlorodifluoromethane	16.5		<9.88	<225	2.21	3.86	
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.5		<15.3	<349	<3.06	<1.53	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	<6.8		<14.0	<318	<2.79	<1.40	
Hexachlorobutadiene	<6.8		<21.3	<485	<4.26	<2.13	
iso-Propyl Alcohol	250.0		<12.3 J	<280 J	<2.46 J	63.6 J	
Methylene chloride	10.0		21.2	<395	<3.47	<1.74	

See footnotes on next page.

Table 3. Concentrations of Volatile Organic Compounds in Generally Co-Located Sub-Slab Soil Vapor Samples and Indoor Air Quality Samples, Former Dangman Park MGP Site, Brooklyn, New York.

			CVS Pharmacy				
Compound	Typical Background Indoor Air Concentrations ¹ (ug/m ³)	- Sample ID: Sample Date:	SSSV-5 3/1/2010	SSSV-6 3/1/2010	SSSV-7 3/1/2010	IA-7 2/22/2010	
(Units in ug/m ³)		Sample Type:	Sub-Slab	Sub-Slab	Sub-Slab	Indoor Air	
Non-MGP-Related Constituents ((Continued)						
4-Methyl-2-pentanone	6.0		<8.19	<186	<1.64	<0.819	
Methyl tert butyl ether	11.5		<7.20	<164	<1.44	<0.720	
tert-Butyl Alcohol	-		<6.06	<138	<1.21	<0.606	
Tetrachloroethene	15.9		<13.6	606,000 D	38.4	10.4	
trans-1,2-Dichloroethene	-		<7.92	<180	<1.58	<0.792	
trans-1,3-Dichloropropene	<1.3		<9.07	<206	<1.81	<0.907	
Trichloroethene	4.2		<10.7	28,000	<2.15	<1.07	
Trichlorofluoromethane	18.1		<11.2	<256	2.26	1.99	
Vinyl bromide	-		<8.74	<199	<1.75	<0.874	
Vinyl chloride	<1.9		<5.11	210	<1.02	<0.511	

1	Typical non-residential background indoor air concentrations are equal to the 90th percentile values observed by the USEPA in a study from 1994 through 1996, which are the values recommended for comparison in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006), Table C2.
2	R qualifier applied only to Non-Detect compounds.
ug/m ³	Micrograms per cubic meter.
D	Compound quantitated at a secondary dilution.
J	Estimated value.
R	Result rejected.
Bold	Indicates detection above laboratory Reported Detection Limit.
	Compound concentration exceeds background indoor air concentration.



PIC:(Opt) PM:(Reqd) TM:(Opt)) LYR:(Opt)ON=*;OFF=*REF* ndum.cwg LAYOUT: 1SAVED: 4/13/2010.11:33.AM ACAD DIV/GROUP:(Reqd) DB:(Reqd) LD:(Opt) Aelville-NY/ACT/B0036704\00000003\01 Adde CITY:(Reqd) G:\ENVCAD\M

LEGEND:

Ν

	LEGEND.
	APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 1
	APPROXIMATE BOUNDARY OF BLOCK 7273, LOT 25
	APPROXIMATE FORMER MGP BOUNDARY
	FORMER MGP FEATURE (1895 AND/OR 1906 SANBORN FIRE INSURANCE MAPS)
	TENANT SPACE BOUNDARY
1	TENANT SPACE DESIGNATION
SB-1 🔺	SOIL BORING LOCATION
SB-2 🔺	SOIL BORING/GEOPROBE GROUNDWATER SAMPLING LOCATION
MW-1-	MONITORING WELL LOCATION
SSSV-1 실	SUB-SLAB SOIL VAPOR SAMPLE LOCATION
IA-1 📕	INDOOR AIR QUALITY SAMPLE LOCATION
AA-1 📕	AMBIENT AIR QUALITY SAMPLE LOCATION

į

Indoor Air (Canister) Sample Collection Field Form

Project #	0036704.0000	. 00005		Consultant	Arcon	la
Project Name <u>for</u>	ne pargnan l	Part ngpsite		Collector	Pat Pre	zorski
Sample ID	IA-1	L		Vacuum gaug	ge "zero" ("Hg)	Vez
Start Date/Time	2/22/10	9:38AM		Start Pressur	e ("Hg)	-285
End Date/Time	2/22/1	0 1500		End Pressure	e ("Hg)	-7
Canister ID		1667		End pressure	> "zero"?	YP2
Flow controller ID		0176		Sampling dur	ation (intended)	8h
Associated ambient ail	sample ID	AA-1	Associated	d sub-slab vap	or sample ID	
Tubing type used	NA	Length of tubing	NA	cm Tu	ibing volume	NA cc
Volume purged	cc @	<u>a</u>	min	1 to 3 volume	es purged @ < 2000	co/min? NA
Weather Conditions at		Adocr				1
Air temperature (°F)	36	Rainfall		W	ind direction	North
Barometric pressure	29.99	Relative humidity $\mathscr{U}_{\mathcal{C}}$	50	W	ind speed (mph)	6.9
Indoor air temp (°F) Building Suivey and C Staff occupied w Staff occupied att Floor Plan showing sa	63.5 hemical Inventory For h cytomer	rm Completed?	vo *	ative humidity Photograph I	Ds	39, 7
NE Bur	ampie location, HVAC		TA		-Τ Δ-1 440	rox 48 from store extreme
Kt 14	idst deck et 1 32 -9"14 510 -7"44		₩ <u><u></u> (= 32.6°</u>		35.1 % relation	(hvadty)
****						à.
					-	

Mow controlle 9.9 allors

į

Indoor Air (Canister) Sample Collection Field Form

	BOD 36704.000	0.00005	Consi	ultant	Arcedo	(
Project Name <u>for</u>	no Dangmon Parl	c mgp site	Collec	ctor _	Pet Pre	zorki
Sample ID	IA	-2_			10x0 ¹¹ (9110)	142
Start Date/Time	2/22/10	9:13 AM		Im gauge "z Pressure ("H		-29
End Date/Time	2/22/10	1600		ressure ("H	· ·	-7
Canister ID	k. Shi	1698	End p	ressure > "a	zero"?	V9-
Flow controller ID		0441	Samp	ling duration	n (intended)	Sha
Associated ambient air	sample ID	AA-L	Associated sub-s	ab vapor s	ample ID	
Tubing type used	NA	Length of tubing	NA	cm Tubing	g volume	vAcc
Volume purged	<u></u> cc@		min 1 to 3	volumes pu	urged @ < 200co	c/min?
Weather Conditions at	Start of Sampling:	,tdoo				a ila
Air temperature (°F)		Rainfall	······		direction .	NOTI
Barometric pressure		Relative humidity °			speed (mph)	6.9
Substantial changes in	weather conditions du	ing sampling or ov	ei ille pasi 24 ill 40	183.		
Indoor air temp (°F)	59.2		Indoor relative hu	umidity (%)	у	0.6
.	hemical Inventory Form		Photo	ograph IDs tial pathway		
	ample location, HVAC e		Photo ir sources, preferent		15 JA-2	Approx gt from extrance
Floor Plan showing sa	Imple location, HVAC e	quipment, indoor a	Photo ir sources, preferent	tial pathway	JA-2 4	from extrance
Floor Plan showing sa	Imple location, HVAC e	quipment, indoor a	Photo	tial pathway	JA-2 4	from extrance

Flow controller 9.8 ml/mm

Indoor Air (Canister) Sample Collection Field Form

Project Name	· · · · · · · · · · · · · · · · · · ·	1.0000.00015 - Part nGP site	Consulta	the second state of the se	frezonski
Sample ID	Dupoz	2210		auge "zero" ("Hg)	No, Rea
Start Date/Time	2(22	10 9:11 AM	-	sure ("Hg)	greater +
End Date/Time	@122	110 1600	End Press	sure ("Hg)	-9
Canister ID		1680	End press	sure > "zero"?	Y42_
Flow controller ID		0023	Sampling	duration (intended)	
Associated ambient	air sample ID	AA-1	Associated sub-slab	vapor sample ID	
Tubing type used	NA	Length of tubing	MA_cm	Tubing volume	NA
Volume purged	NA	@	min 1 to 3 vol	umes purged @ < 200	Dcc/min?
Weather Conditions	05	: orthur			c. V.
Air temperature (°F)		Rainfall		Wind direction	Nom Ca
Barometric pressure		Relative humidity ($\int_{\mathcal{S}} \underline{50}$ er the past 24 to 48 hrs:	Wind speed (mph)	6.7
	Chemical Inventory		air sources preferential	pathways	
Floor Plan showing	sample location, H		in oburoco, protoronnua		
Floor Plan showing	sample location, H				
Floor Plan showing	sample location, HV	. <u></u>			
Floor Plan showing	i sample location, HV	<u> </u>			
Floor Plan showing	i sample location, HV	<u> </u>			
Floor Plan showing	i sample location, HV	<u></u>			
Floor Plan showing	i sample location, HV				
Floor Plan showing	i sample location, HV				
	· · · · · · · · · · · · · · · · · · ·				
çee	e IA-2				
Comments:	z IA-2 Vacuum ga	vse not at	Zero Reading	-4.5	
Comments:	e IA-2	vse not at		-4.5	
Comments:	Z IA-2 Vacurm ga le ond time	vse not at	Zero. Reading		
Comments: Sumple	Z IA-2 Vacurm ga le ond time	vse not at	Zero. Reading		ý.
Comments: Sumul	2 IA-2 Vacuum ga le ond fime 1433 -	vse not at			-)- (~//mh)

Indoor Air (Canister) Sample Collection Field Form

Project # Project Name	BOO36704,0000.00005 Forme Davsman Park MGP site	Consultant <u>Arcadrs</u> Collector <u>Pat Prezors</u> k;
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated ambient ai	エA-3 2/22/10 9103 A7 2/22/10 (62) 1036 0324 rsample ID AA-1 As	Vacuum gauge "zero" ("Hg) Vlacuum Start Pressure ("Hg) -29,5 End Pressure ("Hg) -7 End pressure ("Hg) -7 Sampling duration (intended) 8 h-3 ssociated sub-slab vapor sample ID
Tubing type used Volume purged	Length of tubing cc @ mi	MAcm Tubing volume MAcc n 1 to 3 volumes purged @ < 200cc/min?
Air temperature (°F) Barometric pressure	t Start of Sampling: $OAFdOAA$ 3V Rainfall 29.99 Relative humidity t_6 n weather conditions during sampling or over the	Wind direction No H 54 Wind speed (mph) 11.5 past 24 to 48 hrs:
All staff or pho	CF = 9 In Chemical Inventory Form Completed? All during Attends. Alw - claring Found. ample location, HVAC equipment, indoor air sou	door relative humidity (%) <u>3072</u> Photograph IDs
K -	Citarit Current extrant	IA-3 approx 40 ⁱ from distance. Brik office
Comments:	Mid pt chack 1333 - 1552 -9 1621 -7 (70.3 F,	16"4 <u>6</u> (38.6% FH, 63.6F) 36.2% FH)

Flow controlle 9.6 Allanta

į.

Indoor Air (Canister) Sample Collection Field Form

Project #	Boo 36704,0000 . 0000 -	5	Consultant	Ara	adis
Project Name <u>6</u>	me Dowsman Pork M	GRSite	Collector	Pat	Prezorrki
Sample ID	IA-Y			Passe P (PLIs)	
Start Date/Time	2/22/10 11	IVAM	Vacuum gauge Start Pressure (-28,75
End Date/Time		904	End Pressure ('	'Hg)	-F
Canister ID	991		End pressure >	"zero"?	yez.
Flow controller ID	0273	•	Sampling durati	ion (intended)	2hr
Associated ambient air	sample ID <u>AA-</u>	Associate	d sub-slab vapor	sample ID	
fubing type used	NA Length of	tubing MA	cm Tubi	ng volume	NA_cc
/olume purged	XAcc@	min	1 to 3 volumes	purged @ < 20	00cc/min?
	Start of Sampling: 01/200				
Air temperature (°F)	<u>YO</u> Rainfall		the second s	d direction	Norm
Barometric pressure	<u>29,99</u> Relative h weather conditions during sample	umidityola <u>45</u>		d speed (mph)	61
Indoor air temp (°F) Building Survey and C	57.8 hemical Inventory Form Complete	**********	lative humidity (% Photograph ID:		49.5
Floor Plan showing sa	ample location, HVAC equipment	, indoor air sources, p	referential pathw	ays	
E Sure	FA-Y Aconton				
Atis	+ 1537 -17"4 + 1537 -17"4 + 1744	-11" 1+j-, 1811	"9.5" Hz/	, 1935 -9°.	-F) 5"14_, /g 51_ ^{-g} "
At 191	y -7"4 (51,1	lo relative Hur	nilty 63,	Y°F)	2
			Flow	controller	9.4 allmin

į

Indoor Air (Canister) Sample Collection Field Form

Project #	BOU36704.0000. 0	50005	Consultant	A	-cedrs
Project Name	rman Darigman Pt	ark MGP site	Collector	Pat	Prezorti
Sample ID	IA-5			'zoro" /"Ha\	(
Start Date/Time	2/22/10	8:56 AM	Vacuum gauge " Start Pressure ("		Conto ther
End Date/Time	2/22/10	1616	End Pressure ("		-7
Canister ID	1542		End pressure > '	'zero"?	Yes-
Flow controller ID	0	276	Sampling duration	on (intended)	Shy
Associated ambient air	r sample IDA_A	<u>(</u> Ass	sociated sub-slab vapor	sample ID	
Fubing type used	Len	igth of tubing	<u>∧∕A</u> cm Tubir	ig volume	NA_cc
Volume purged	cc@	mir	n 1 to 3 volumes p	ourged @ < 20	0cc/min?
	Start of Sampling: offs 34 Rai		Mind	direction	North
Air temperature (°F) Barometric pressure		nfall ative humidity		I direction I speed (mph)	11.5
			nast 24 to 48 brs'		
Substantial changes ir	n weather conditions during	sampling or over the			
- MA-A Indoor áir temp (°F)	59,2	Inc	At Mrd At loor relative humidity (%		65.6
- MA-A Indoor áir temp (°F)	n weather conditions during	Inc			65.6
- AR-A Indoor air temp (°F) Building Survey and C	59,2	Inc	Af Mrd Af loor relative humidity (% Photograph IDs		65.6
- AR-A Indoor air temp (°F) Building Survey and C	59,2 Chemical Inventory Form Co ample location, HVAC equi	Inc	Af Mrd Af loor relative humidity (% Photograph IDs		65.6
- AR-A Indoor air temp (°F) Building Survey and C	59,2 Chemical Inventory Form Co ample location, HVAC equi	ompleted?	Af Mrd Af loor relative humidity (% Photograph IDs	iys	G 5.G A-5 is approx
- AR-A Indoor air temp (°F) Building Survey and C	59,2 Chemical Inventory Form Co ample location, HVAC equi Pp 53-0 7 7 7 7 7 7 7 7 7 7 7 7 7	ompleted?	Af Mrd Af loor relative humidity (% Photograph IDs	iys	
Find of temp (°F) Building Survey and C Floor Plan showing s	59,2 Chemical Inventory Form Co ample location, HVAC equi Pp 53-0 7 7 7 7 7 7 7 7 7 7 7 7 7	ompleted?	Af Mrd Af loor relative humidity (% Photograph IDs	iys	A-S is approx
Find of temp (°F) Building Survey and C Floor Plan showing s	$\frac{59,2}{chemical Inventory Form Complete location, HVAC equination and the second $	ipment, indoor air sour cluttoric track cluttoric track cluttoric track cluttoric track cluttoric track t	A+ Mrd A+ loor relative humidity (% Photograph IDs rces, preferential pathwa	iys	A-S is approx
FIGOR Plan showing s	Shemical Inventory Form Co ample location, HVAC equi	he ck cf i2	At Mrd At loor relative humidity (% Photograph IDs rces, preferential pathwa 32.5)) 2,5 ¹¹ 14	A-S is approx

No Flow (mellmon) or contribu

į

Indoor Air (Canister) Sample Collection Field Form

Project #	B0036704.a	0000 - 00005		Consultan	it/	tread	
Project Name0	argman Park f	orman MGP site		Collector		Pat	Prezorati
Sample ID Start Date/Time	IA-6 2/22/10	8:47 AM		Start Press		("Hg)	<u>Yes</u> -29
End Date/Time	-2/22/10	1541		End Pressu			- +
Canister ID		609		•	ure > "zero"'		- yez
Flow controller ID		0175 AA-1	Associate	sampling c ed sub-slab v	Juration (inte		
Associated ambient air			Associate	0 301)-31a0 V	apor sample		
Tubing type used	NA	Length of tubing	NA	cm	Tubing volu	me	NAcc
Volume purged	<u></u> cc (@ <i>~/A</i>	min	1 to 3 volu	mes purged	@ < 200	occ/min?
Weather Conditions at Air temperature (°F) Barometric pressure Substantial changes in	<u>34</u> 29,99	Rainfall Relative humidity d during sampling or ove		24 to 48 hrs:	Wind direct		<u>No.H</u> 11.5
Indoor air temp (°F) Building Survey and C Floor Plan showing sa				lative humidi Photograp preferential p	h IDs		29.9
Nt	Lobby Door) IA-6 L	Der B (B) () () () () () () () () () () () () ()	6 C		TA	-le approx 17' from front entrance
Comments:	Midd ch	eck of 12:55	-1	6" Hg			
<u> </u>	+ 1426 -1	1" 12-					
	At 1532	-7,75 "4		24.1			
	At 1541	-7 "H_	(66	(3°F) (54,2	-10 K	Lebotive Humidity)

No rate (m/min) on Flow antrolly.

į

Indoor Air (Canister) Sample Collection Field Form

Project #	Bac 36 Foy, 0000, 00005	Consultant Arcadis
Project Name	Formen Dangman Park MGP site	Collector Pat Prezorski
Sample ID	•FA-7-	
Start Date/Time	2/22/10 9:29 AM	Vacuum gauge "zero" ("Hg) <u>V92</u> Start Pressure ("Hg) <u>Grater than - 30</u>
End Date/Time	2/22/10 1705	End Pressure ("Hg) - 7
Canister ID	1545	End pressure > "zero"?
Flow controller ID	0282	Sampling duration (intended)
Associated ambient ai	i	iated sub-slab vapor sample ID
Tubing type used	Length of tubing	NA_cm Tubing volume NAcc
Volume purged	cc @ min	1 to 3 volumes purged @ < 200cc/min?
Weather Conditions a	t Start of Sampling: Outdour	/
Air temperature (°F)	<u>36</u> Rainfall	Wind direction North
Barometric pressure	29,99 Relative humidity 1/0 50	0 Wind speed (mph)6.9
Substantial changes i	n weather conditions during sampling or over the part	st 24 to 48 hrs:
	Chemical Inventory Form Completed?	r relative humidity (%) Photograph IDs preferential pathways
N Part		Pharmery
Comments:	Midstchecket 1340 -13" 1550 -11 "Hg, 1628 -9"Hz	Hy_ (35,3% relative Hornoty, 62.7 -, 1647 -8"H_
A+-	1765 -7"4 (73.1F,	2700% relative hundley)
		No Flow Ilmon o

Ambient Air (Caniste	r) Sample	Collection	Field Form

	so 36704.00 men Dangman			Consultant Collector	Arcd Pat	s Prezosti
Sample ID	AA-			Vacuum gaug	e "zero" ("Hg)	Y#2
Start Date/Time	2/22/10	9:59 AM		Start Pressure	e ("Hg)	-29.5
End Date/Time	2/22/10	1521		End Pressure	("Hg)	-7
Canister ID	<u> </u>	530		End pressure	> "zero"?	V/2
Flow controller ID		0369		Sampling dura	ation (intended)	gh-3
Tubing type used	NA	Length of tubing	NA	cm Tul	bing volume	NA cc
Volume purged	MA cc (D	min	1 to 3 volumes	s purged @ < 200	cc/min?
Weather Conditions at	Start of Sampling:					
Air temperature (°F)	37	Rainfall		Wi	nd direction	Not
Barometric pressure	29,99	Relative humidity	50		nd speed (mph)	6.9
Substantial changes in	weather conditions d	uring sampling or ove	er the past 24	to 48 hrs:		

Site Plan showing sample location, building(s) being sampled, building HVAC inlet, outdoor air sources, wind direction

Kurt capit Book (VS	
AA-1 Aandi copped Perking	
Comments: Mid-pt-chack of 14/10 - 12" Hy	↓.
At 1435 -10,25" 142	
At 1510 -8" Hy At 1521 -7" Hy	

How controller 9.9 ml/min

nationalgrid _______Sub-slab Vapor (Canister) Sample Collection Field Form

Project # Project Name	B 036704.0000.00005 Forme Dargmen Padimbpsite	Consultant Arcedrr Collector pat Pezorrt;
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated indoor a	$\frac{555V-1}{2/2510} \frac{2/2510}{12:14} \frac{12:14}{16:79} \frac{16:79}{0368}$ ir sample ID <u>TA-2</u>	Vacuum gauge "zero" ("Hg) ya_2 Start Pressure ("Hg) $22, 5$ End Pressure ("Hg) -6 End pressure > "zero"? yf_2 Sampling duration (intended) $a_{Max} 36m$ Associated ambient air sample ID $A = 1$
Tubing type used Volume purged	<u>teflas</u> Length of tubing cc @ <u>l 5 (c m/</u> min	1 to 3 volumes purged @ < 200cc/min?
Air temperature (°F) Barometric pressure	- O () (Wind speed (mph) /2 , 7
	Chemical Inventory Form Completed?	
Front Door		rv-1 located approx 25' from front over entrone entrone
Comments:	55584-(13	Pup 022510
		flow controlle

Project # Project Name	BOU36704.0000.00005 Forme Dowsman Park MGP site	Consultant Collector	Ara Pat	rezonti
Sample ID Start Date/Time End Date/Time	SSTV-2 2/25/10 1308 2/25/10 1338	Vacuum gauge " Start Pressure (" End Pressure ("H	Hg)	<u>-28.5</u> -7
Canister ID Flow controller ID Associated indoor air	<u> </u>	End pressure > ' Sampling duration Associated ambient a	n (intended)	Approx 38 mints AA-1
Tubing type used Volume purged	+ 2 flor/ Length of tubing cc @ <u>159 nl/</u> min	168 cm Tubir 1 to 3 volumes p	-	cc 00cc/min? <u>1922</u>
Weather Conditions a Air temperature (°F) Barometric pressure Substantial changes in	211	Wind	direction speed (mph)	No-th 12,7
Indoor air temp (°F) Building Survey and C	Inde	oor relative humidity (%) Photograph IDs		47.1
Floor Plan showing s	ample location, HVAC equipment, indoor air sourc	ces, preferential pathwa	/S	
Best will of Ame	SSV-2 Located approx		2. 1	Front Noch
Comments:	SSV-2 locater approx	to trantime	2. trance	

Flow contailer 153 allum

nationalgrid _______Sub-slab Vapor (Canister) Sample Collection Field Form

ct Name <u>from Pargner Park Holpsite</u> Collector <u>Ret Brooki</u> Det ID <u>Dep022510</u> Vacuum gauge zero" ("Hg) <u>12</u> aterTime <u>212510 1215</u> Start Pressure ("Hg) <u>15</u> erd Pressure ("Hg) <u>16</u> End Pressure ("Hg) <u>16</u> End Pressure ("Hg) <u>16</u> g type used <u>174-2</u> Associated ambient air sample ID <u>174-2</u> associated ambient air sample ID <u>44-1</u> g type used <u>156 ref.</u> In to 3 volumes purged @ <200cc/min? <u>yr</u> ere conditions at Start of Sampling: Orfrice more conditions during sampling or over the past 24 to 48 hrs: r air temp ("F) <u>28.45</u> Indoor relative humidity (%) <u>54</u> Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways <i>Sice SSSV-1</i>	Project #	B00 36704,0000,00005	ConsultantA	codrs
Date/Time $2/25/10$ 1215 Start Pressure ("Hg) -18 ate/Time $4/25/10$ 1243 End Pressure ("Hg) -6 er ID 705 End pressure > 2eo"? 972 controller ID 0267 Sampling duration (inionded) $appr. 38 and task of a sample ID gt ype used 4.4flas/ Length of tubing (65) cm Tubing volume cc gt ype used 4.2flas/ Length of tubing (65) cm Tubing volume cc gt ype used 4.2flas/ Length of tubing (65) cm Tubing volume cc gt ype used 4.2flas/ Length of tubing (65) cm Tubing volume cc gt ype used 4.2flas/ Length of tubing (65) cm Tubing volume cc gt ype used 4.2flas/ Length of tubing 10.5 m 10.5 m 200ccmin? Yr per conditions at start of sampling: 0.7fle Vind speed (mph) 11.7 11.7 antial changes in weather conditions during sampling or over the past 24 to 48 hrs: 11.7 54 54 ng Survey a$	Project Name	Form parsonen Park M6Psite	Collector <u>Pat</u>	Vrezorki
Date/Time $2\left[25\left[10 1243\right]$ Start Pressure ("Hg) -18 ate/Time $25110 1243$ End Pressure ("Hg) -6 Find pressure "zero"? y_{22} controller ID 267 Sampling duration (intended) approx 38 minute iated indoor air sample ID $IA - 2$ Associated ambient air sample ID $A4 - 1$ at you used $4xflat$ Length of tubing (68) om Tubing volume cc the purged $cc \oplus 156$ Min 1 to 3 volumes purged $@<200cc/min?$ yes there Conditions at Start of Sampling: $0.5rtAe$ more conditions at Start of Sampling: $0.5rtAe$ antial during sampling or over the past 24 to 48 hrs: 29,491 Wind speed (mph) $12.7antial changes in weather conditions during sampling or over the past 24 to 48 hrs:r$ air temp (°F) $(a e S)$ Indoor relative humidity (%) $54Photograph IDs$	Sample ID	Dup022510	Vacuum dauge "zero" ("Ho)	10
ate/Time $425/16$ 1243 End Pressure ("Hg) -6 Find Pressure ("Hg) -6 End pressure > "zero?" $\frac{1}{2}$ $\frac{1}{$	Start Date/Time	2/25/10 12:15		-28
controller ID 0.267 Sampling duration (intended) $April 38 Authors is a sample ID IA - 2 Associated ambient air sample ID AA - 1g type used A \cdot A^{1}a/ Length of tubing (6.8 \text{ cm} \text{ Tubing volume} \text{ cc}) and AA - 1 and A$	End Date/Time			-6
iated indoor air sample ID IA-1 g type used $AA-1$ metric conditions at Stant of Sampling: $AA-1$ metric pressure 29.41 antial changes in weather conditions during sampling or over the past 24 to 48 hrs: $AA-1$ g type used $AA-1$ $AA-1$ maintail changes in weather conditions during sampling or over the past 24 to 48 hrs: 54 ng Survey and Chemical inventory Form Completed? Photograph IDs Plan showing sample location, HVAC equipment, indoor air	Canister ID	705	End pressure > "zero"?	¥92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow controller ID	0267	Sampling duration (intended)	approx 38 minut
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Associated indoor air	sample ID IA-2	Associated ambient air sample ID	
rer Conditions at Start of Sampling: $O + fr_{1}L_{2}$ mperature (°F) 33,8 Raintall $Listrain/factor Wind direction MM netric pressure 29.4/1 Wind speed (mph) 12.7 antial changes in weather conditions during sampling or over the past 24 to 48 hrs: ' r air temp (°F) (fell c.5) Indoor relative humidity (%) 54 r air temp (°F) (fell c.5) Indoor relative humidity (%) 54 Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways $	Tubing type used		<u>(6 </u> cm Tubing volume	
mperature (°F) 33.8 Rainfall Light rain/face Wind speed (mph) 12.7 antial changes in weather conditions during sampling or over the past 24 to 48 hrs:	Volume purged	cc@156m_fmin	1 to 3 volumes purged @ < 20	Occ/min?
hetric pressure 29.44 Wind speed (mph)		at Start of Sampling: Orfrile		NNW
antial changes in weather conditions during sampling or over the past 24 to 48 hrs:	Air temperature (°F)		EEEEE	
r air temp (°F) <u>(de.5</u> Indoor relative humidity (%) <u>54</u> ng Survey and Chemical Inventory Form Completed? Photograph IDs Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways Size SSSV-1 iments: Drp 022510 is SSSV-1	•			<u></u>
Ing Survey and Chemical Inventory Form Completed? Photograph IDs Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways Size Size SSSV-(Dxp 022510 is SSSV-(ouostaniai changes			1
Ing Survey and Chemical Inventory Form Completed? Photograph IDs Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways Size Size SSSV-(Dxp 022510 is SSSV-(
Ing Survey and Chemical Inventory Form Completed? Photograph IDs Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways Size Size SSSV-(Dxp 022510 is SSSV-(Indoor air temp (°F)	Calo 5 India	or relative humidity (%)	54
Plan showing sample location, HVAC equipment, indoor air sources, preferential pathways See \$555v-1 iments: Dxp 022510 is				
See 555V-1 iments: 	,			
ments: Drp 022510 is SSSV-1	Floor Plan showing	sample location, HVAC equipment, indoor air source	es, preferential pathways	
ments: Drp 022510 is SSSV-1				
ments: Drp 022510 is SSSV-1	* .			
ments: Drp 022510 is SSSV-1				
ments: Drp 022510 is SSSV-1				
ments: Drp 022510 is SSSV-1				
ments: Drp 022510 is SSSV-1				
ments: Drp 022510 is SSSV-1				
ments: Drp 022510 is SSSV-1		C	an SCOUL	
Drp 022510 is SSSV-1			xx >>>V-1	
	Comments:	Dec 600 Star to CCC1/-1		·····
Florer c. hale		10-p 0 + 2 3 10 1 2 3 5 0 1	· · · · · · · · · · · · · · · · · · ·	
Elmer c. tale	••••••••••••••••••••••••••••••••••••••			
Florer c. trake				
1 Wh 1 LUNI 10-				Flow contrade

	Bou36704.0	000, 00005 v Park MCP stte	Consultant Collector	Arc. Pat	adri Prezonti
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated indoor air s		1252	Vacuum gauge Start Pressure End Pressure End pressure s Sampling dura Associated ambient	("Hg) ("Hg) > "zero"? tion (intended)	<u>-29</u> -29 -7 <u>yoz</u> approx 38 minut AA-1
Tubing type used Volume purged	<u>teflor</u> cc@	Length of tubing		oing volume	
Weather Conditions at Air temperature (°F) Barometric pressure Substantial changes in	39	Asrde Rainfall Light Drive Celetive humodry of uring sampling or over the	, 93 Wir	nd direction nd speed (mph)	NNW 13.8
Indoor air temp (°F) Building Survey and C Floor Plan showing sa			ndoor relative humidity (Photograph IC urces, preferential pathw)s	52.7
North Por	fast fast fast sat	Eastern well elother First Pole For polypher The polypher The polypher The polypher))	ρηγ	29" South of tel gok & 11" west of Eastern well, front door,
Comments: <u>(</u>	l <u>vze</u> n	.:47-12:48 d	- 152 ml/m	<i>Ъ</i>	

Plan controlle 159 mllmen

Project # <u>B6036704.0000.00005</u> Project Name <u>Formen Pangener Park M6P site</u>	Consultant <u>Arcodos</u> Collector <u>Pat Prezo r</u> Fi	
Sample ID $SSSV - Y$ Start Date/Time $12Y (0)$ $(3YG)$ End Date/Time $2[2Y (0)$ $145Y$ Canister ID 923 Flow controller ID 0252 Associated indoor air sample ID $IA-5$ Ar	Vacuum gauge "zero" ("Hg)V/2Start Pressure ("Hg) -2.9 End Pressure ("Hg) -7 End pressure > "zero"? y_{22} Sampling duration (intended) $4p_{22} \times 38 m/2$ ssociated ambient air sample ID $AA-1$	Hz_
Tubing type used $\frac{f_{e}f_{o}}{f_{o}}$ Length of tubing [] Volume purged cc @ $\frac{155m_{e}}{m_{e}}$ min	6 8	•
Weather Conditions at Start of Sampling: Outside Unercent Air temperature (°F) <u>41</u> Rainfall <u>Norre</u> Barometric pressure <u>29.71</u> Relative Humidity ² / ₂ Substantial changes in weather conditions during sampling or over the past	Wind direction <u>NNW</u> & & Q Wind speed (mph) <u>15</u>	
Indoor air temp (°F) <u>C 7.5</u> Indoor Building Survey and Chemical Inventory Form Completed?	relative humidity (%) <u>53,3</u> Photograph IDs	• -
Floor Plan showing sample location, HVAC equipment, indoor air sources well	s, preferential pathways Back of stone Back of stone W Back Spot Spot Spot Station Frietd Attack Spot Station Here Note Attack Spot Station Station Spot Station Spot Station Station Spot Station Spot Spot Station Spot Spot Spot Spot Spot Spot Spot Spot	SSSV-Y is located 70 from fro.toton.

Flow controller 159 ml/min

nationalgrid _______Sub-slab Vapor (Canister) Sample Collection Field Form

Project #	B0036704,0000, 0		Consultant	Arca	
Project Name	me Dargman Park 1	16P site	Collector	Vat	fezorit:
Sample ID	555V-5		Vacuum gauge "zero	" ("Ha)	WZ.
Start Date/Time	3/1/10	FUTAM	Start Pressure ("Hg)	(-28
End Date/Time	3/1/10	8:12 AM	End Pressure ("Hg)	-	-7.
Canister ID	652		End pressure > "zero)"?	¥92-
Flow controller ID	026	9	Sampling duration (ir	ntended)	approx 38 minut
Associated indoor air s	ample ID <u>IA-</u>	Ass	ociated ambient air sa	mple ID	AA-1
Tubing type used	Jeflow Length c	ftubing <u>168</u>	cm Tubing vo	lume	CC
Volume purged	cc@	159 ml/min	1 to 3 volumes purge	ed @ < 200c	c/min?
Weather Conditions at	Start of Sampling: Ustrale				NW
Air temperature (°F)	<u>39</u> Rainfall	NUSE	Wind dire		21.9
Barometric pressure	29.66		Wind spe	ed (mph)	Liel
Substantial changes in	weather conditions during sam	pling or over the past 2	4 to 48 hrs:		1
	· · · · · · · · · · · · · · · · · · ·		· · · ·		
	-				
Indoor air temp (°F)		Indoor re	lative humidity (%)		35,0
Building Survey and C	hemical Inventory Form Comple	eted?	Photograph IDs		
Floor Plan showing s	ample location, HVAC equipment	nt, indoor air sources, r	preferential pathways		
	frigerator care				· · ·
		an a		5V-5 1	roted
ITE]				1' from front
	5558-5		, F		door
			}		r i i i i i i i i i i i i i i i i i i i
No-th					
E]		
			See photo.	s For lo	cation
144			•	under e	capet the
Front Doventrance					
L		S Ar			
L		, 5 Ar			······
L		5 A7			
L		5 An			
L		<u>5 An</u>			

Project # <u>B6036704.0000.0005</u> Project Name <u>forme Nangman Park MGP site</u>	Consultant <u>Arcodis</u> Collector <u>Pat Arczoreki</u>
Sample ID $SSSV-G$ Start Date/Time 31110 End Date/Time 31110 $9':25A-1$ Canister ID 1635 Flow controller ID 0287 Associated indoor air sample ID $IA-7$	Vacuum gauge "zero" ("Hg)NoReading-4Start Pressure ("Hg)Greaten than -30End Pressure ("Hg) -12 End pressure ("Hg) -12 End pressure > "zero"? ygz Sampling duration (intended) $approx 38 minuteAssociated ambient air sample IDAA-I$
Tubing type used $\frac{f_{\ell}f_{\ell}}{cc@ 15\%}$ Length of tubing 1 Volume purged $cc@ 15\%$ length min	C C 1 to 3 volumes purged @ < 200cc/min?
Weather Conditions at Start of Sampling: $\sigma + Sr de$ Air temperature (°F) <u>40</u> Rainfall <u>Now</u> Barometric pressure <u>29.67</u> Substantial changes in weather conditions during sampling or over the p	Wind direction NW Wind speed (mph) 2-3 wast 24 to 48 hrs:
Indoor air temp (°F) Indo Building Survey and Chemical Inventory Form Completed?	por relative humidity (%) <u>36.4</u> Photograph IDs
Floor Plan showing sample location, HVAC equipment, indoor air source	A double to the second of the
Comments: Orge 9:20-9:22 AM	
No capor Summa Car	
At 9:14 - 20" Hg	Plan controlle

Project # <u>B0036704,0000.00005</u>	Consultant Arceder
Project Name former Dangmer Pat NGP Site	Collector Pat Prezonti
Sample ID SSSV-7	Vacuum gauge "zero" ("Hg) No. Reafine -
Start Date/Time 3/11/10 11/32 AM	Vacuum gauge "zero" ("Hg) <u>No. Keafing</u> Start Pressure ("Hg) Greater than -30
End Date/Time 3/1/10 /2:00	End Pressure ("Hg) -12
Canister ID 963	End pressure > "zero"?
Flow controller ID 0327	Sampling duration (intended) Approx 38 minute
Associated indoor air sample ID <u>IA-7</u>	Associated ambient air sample ID
	<u>168</u> cm Tubing volumecc
Volume purged cc @ j59	nin 1 to 3 volumes purged @ < 200cc/min?
Weather Conditions at Start of Sampling: ortside	
Air temperature (°F) <u>46</u> Rainfall <u>No</u>	
Barometric pressure <u>29,70</u> Relative Hundh	970 97 ·····
Substantial changes in weather conditions during sampling or over th	ie past 24 to 48 hrs:
Indoor air temp (°F) <u>GY, 7</u> II	indoor relative humidity (%) <u>37,2</u>
Building Survey and Chemical Inventory Form Completed?	Photograph IDs
Floor Plan showing sample location, HVAC equipment, indoor air so	ources, preferential pathways
SSSV-7 Located Yg' South of Fra.	
) >> -7 1000 10 Sona of 170.	
1	
,	
Aisk II	Tessor7
	FIRE EX. + SSSV - FORESTA
Main do of tomace	FILEX. + SSSV-7-10 colert FILEX. + SSSV-7-10 colert 319,1150. And Door File Ex. + Door In center of 4 Ft wide Halling
	/
Comments: 11: 29 An - 11:31 purge	

Plow controller 155 ml/mm

1

ExonMobil Chemica

MATERIAL SAFETY DATA SHEET

ExxonMobil Chemical Company

A Division of Exxon Mobil Corporation

DF-2000 FLUID

and the second

No. (Anglistica)

PAGE: 1 DATE PREPARED: JUN 16, 2000 MSDS NO.: 92842583

SECTION 1 CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

	an de an an 1975 and an ach de Art alte faith is a Maran air a' air ann an Anna an Anna an Anna an Anna an Anna
PRODUCT NAME: DF-2000 FLUID	
CHENTCAL NAME :	CAS 64742~48~9
Synthetic Aliphatic Hydrocarbon, Hydrotreated	CA3 04142 40 0
CHENICAL FAMILY:	
Aliphatic Hydrocarbon	
PRODUCT DESCRIPTION:	
Clear coloriess liquid.	`
INTACT ADDRESS:	
ExxonMobil Chemical Company	
P.D. Box 3272, Houston, Texas 77253-3272	
* EMERGENCY TELEPHONE NUMBERS: (24 Hours) **	Mangharya 1949 Physical Alberta Constanting and Alberta Constanting Co
* CHEMTREC (800) 424-9300 **	
ExxonNobil Chemical Company (800) 726-2015 **	
NON EMERGENCY TELEPHONE NUMBERS : .(8am-5pm M-F)	
FOR HEALTH AND SAFETY INFORMATION CALL ; (281) 870-	
FOR GENERAL PRODUCT INFORMATION CALL : (281) 870-	6000
SECTION 2 COMPOSITION/INFORMATION ON I	NGREDIENTS

This product is hazardous as defined in 29 CFR1910.1200.	
OSHA HAZARD Combustible	
	A PRIMA PRIMA PROVIDE A DEPOSIT OF THE DEPOSITION OF THE DEPOSITION OF THE DEPOSITION OF THE DEPOSITION OF THE
SECTION 3 HAZARDS IDENTIFICATION	
DTENTIAL HEALTH EFFECTS	
EYE CONTACT:	
Slightly irritating but does not injure eye tissue.	a
SKIN CONTACT:	
Low order of toxicity.	
Frequent or prolonged contact may irritate and cause dermati	tis
skin contact may aggravate an existing dermatitis condition	
INHALATION:	
High vapor/aerosol concentrations (greater than approximate)	V 1000 ppm)
ALLY ITTILALING TO THE EVES BIDD THE PARDIDATORY TRACT MAKES	Linn homala also a
CITATINGS, GINES LINES A, GROWE IN455, UNCONSCIOUSNESS AND ATHA	New Neadaches,
nervous system effects, including death,	Central
INGESTION	

INGESTION:

Small amounts of this product aspirated into the respiratory system during ingestion or vomiting may cause mild to severe pulmonary injury, possibly progressing to death. Minimal toxicity.

ExonMobil Chemic

MATERIAL SAFETY DATA SHEET

ExxonMobil Chemical Company

A Division of Exxon Mobil Corporation

DF-2000 FLUID

- 14**9**.

The set of the

PAGE: 2 DATE PREPARED: JUN 16, 2000 MSDS ND.: 92842583

SECTION 4 FIRST AID MEASURES

EYE CONTACT:

Flush eyes with large amounts of water until innitation subsides. If innitation persists, get medical attention,

NUMBER OF STREET AND ADDRESS OF ADDRES

SKIN CONTACT:

flush with large amounts of water; use soap if available.

Remove grossly contaminated clothing, including shoes, and launder before reuse.

INHALATION:

Using proper respiratory protection, immediately remove the affected victim from exposure. Administer artificial respiration if breathing is stopped. Keep at rest. Call for prompt medical attention.

INGESTION:

If swallowed, DO NOT induce vomiting. Keep at rest. Get prompt medical attention.

SECTION 5 FIRE-FIGHTING MEASURES

FLASH POINT:147 Deg F. METHOD: TCC ASTM D56NOTE: TypicalFLAMMABLE 'LIMITS:LEL: 1.3 UEL: 8.8 @ 77 Deg F.NOTE: Approximate:AUTOIGNITION TEMPERATURE:640 Deg F. NOTE: Approxiante

GENERAL HAZARD

Combustible Liquid, can form combustible mixtures at temperatures at or above the flashpoint.

Static Discharge, material can accumulate static charges which can cause an incendiary electrical discharge .

"Empty" containers retain product residue (liquid and/or vapor) and can be dangerous. DO NOT pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Empty drums should be completely drained, properly bunged and promptly returned to a drum reconditioner, or properly disposed of.

FIRE FIGHTING

Use water spray to cool fire exposed surfaces and to protect personnel. Isolate "fuel" supply from fire.

Use foam, dry chemical, or water spray to extinguish fire.

Avoid spraying water directly into storage containers due to danger of bollover.

This liquid is volatile and gives off invisible vapors. Either the liquid or vapor may settle in low areas or trave' some distance along the ground or surface to ignition sources where they may ignite or explode, DECOMPOSITION PRODUCTS UNDER FIRE CONDITIONS

No unusual

EXonMobil Chemica

MATERIAL SAFETY DATA SHEET

ExxonMobil Chemical Company

A Division of Exxon Motul Corporation

DF-2000 FLUID

i nation of

6. M.L

PAGE		3	
DATE	PREPARED:	JUN .16,	2000
MSDS	NÜ.:	9284258	3

ACCIDENTAL RELEASE MEASURES SECTION 6

mand at 11

LAND SPILL

Eliminate sources of ignition. Prevent additional discharge of material, if possible to do so without hazard. For small spills implement cleanup procedures; for large spills implement cleanup procedures and, if in public area, keep public away and advise authorities. Also, if this product is subject to CERCLA reporting (see Section 15 REGULATORY INFORMATION) notify the National Response Center. Prevent liquid from entering sewers, watercourses, or low areas. Contain spilled liquid with sand or earth. Do not use combustible materials such as sawdust. Recover by pumping (use an explosion proof or hand pump) or with a suitable absorbent. Consult an expert on disposal of recovered material and ensure conformity to local disposal regulations. WATER SPILL Eliminate sources of ignition. Warn occupants and shipping in surrounding and downwind areas of fire and explosion hazard and request all to stay clear. Remove from surface by skimming or with suitable adsorbents. If allowed by local authorities and environmental agencies, sinking and/or suitable dispersants may be used in non-confined waters. Consult an expert on disposal of recovered material and ensure conformity to local disposal regulations. STORAGE AND HANDLING SECTION 7 ELECTROSTATIC ACCUMULATION HAZARD: Yes, use proper bonding and/or grounding procedure. Additional information regarding safe handling of products with static accumulation potential can be ordered by contacting the American Petroleum Institute (API) for API Recommended Practice 2003, entitled "Protection Against Ignitions Arising Out of Static, Lighting, and Stray Currents" (American Petroleum Institute, 1220 L Street Northwest, Washington, DC 20005), or the National Fire Protection Association (NFPA) for NFPA 77 entitled "Static Electricity" (National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101). LOADING/UNLOADING TEMPERATURE, °F: STORAGE TEMPERATURE, °F: Amblent Ambient LOADING/UNLOADING VISCOSITY, cSt: STORAGE/TRANSPORT PRESSURE, mmHg: 2.0 Atmospheric STORAGE AND HANDLING: Handle and open containers with care. Store in a Keep container closed. cool, well ventilated place away from incompatible materials. Do NOT handle or store near an open flame, heat or other sources of ignition. Protect material from direct sunlight. Material will accumulate static charges which may cause an electrical

Continues on page 4

ExonMobil Chemica

MATERIAL SAFETY DATA SHEET

ExxonMobil Chemical Company

general R. S.

A Division of Exxon Mobil Corporation

PAGE : 4 DATE PREPARED: JUN 16, 2000 DF-2000 FLUID 92842583 MSDS NO .:

spark (ignition source). Use proper bonding and/or grounding procedures. Do NOT pressurize, cut, heat, or weld containers. Empty product containers may contain product residue. Do NOT reuse empty containers without commercial cleaning or reconditioning.

EXPOSURE CONTROLS/PERSONAL PROTECTION SECTION 8

EXPOSURE CONTROLS

and the second second

The use of local exhaust ventilation is recommended to control process emissions near the source. Laboratory samples should be handled in a lab hood. Provide mechanical ventilation of confined spaces. See respiratory protection recommendations.

PERSONAL PROTECTION

For open systems where contact is likely, wear safety glasses with side shields, long sleeves, and chemical resistant gloves. Where contact may occur, wear safety glasses with side shields. Where concentrations in air may exceed the limits given in this Section and engineering, work practice or other means of exposure reduction are not adequate, NIOSH/MSHA approved respirators may be necessary to prevent overexposure by inhalation.

WORKPLACE EXPOSURE GUIDELINES

ExxonMobil RECOMMENDS THE FOLLOWING OCCUPATIONAL EXPOSURE LIMITS: a TWA of 1200 mg/m3 (171 ppm) based on total hydrocarbon.

PHYSICAL AND CHEMICAL PROPERTIES SECTION 9

VAPOR PRESSURE, mmHg at 'F: SPECIFIC GRAVITY, at °F: 1 at 68 Approximate 0.77 at 60 VISCOSITY OF LIQUID, cSt at 'F: SOLUBILITY IN WATER, wt. % at "F: 2,1 at 77 Approximate Less than 0.01 at 77 SP. GRAV. OF VAPOR, at 1 atm (Atrai): FREEZING/MELTING POINT, 'F: Less than -76 5.90 Calculated BOILING POINT, 'F: EVAPORATION RATE, n-Bu Acetate=1: 376 to 401 Less than 0,1

> STABILITY AND REACTIVITY SECTION 10

STABILITY: Stable CONDITIONS TO AVOID INSTABILITY: Not Applicable HAZARDOUS POLYMERIZATION: Will not occur CONDITIONS TO AVOID HAZARDOUS POLYMERIZATION: Not Applicable

ExconMobil Chemic

MATERIAL SAFETY DATA SHEET

ExxonMobil Chemical Company

A Division of Exxon Mobil Corporation

DF-2000 FLUID

Same Nuch

PAGE: 5 DATE PREPARED: JUN 16, 2000 MSDS NO.: 92842583

MATERIALS AND CONDITIONS TO AVOID INCOMPATIBILITY: Strong oxidizing agents. HAZARDOUS DECOMPOSITION PRODUCTS:

None

SECTION 11 TOXICOLOGICAL INFORMATION

Please refer to Section 3 for available information on potential health effects.

SECTION 12 ECOLOGICAL INFORMATION

No specific ecological data are available for this product. Please refer to Section 6 for information regarding accidental releases and Section 15 for regulatory reporting information.

SECTION 13 DISPOSAL CONSIDERATIONS

Please refer to Sections 5, 6, and 15 for disposal and regulatory information.

SECTION 14 TRANSPORT INFORMATION

DEPARTMENT OF TRANSPORTATION (DOT):

DOT SHIPPING DESCRIPTION: PETROLEUM DISTILLATE, N.O.S., COMBUSTIBLE LIQUID, UN 1268, III

Note: In containers of 119 gallons capacity or less this product

is not regulated by DOT.

SECTION 15 REGULATORY INFORMATION

TSCA:

This product is listed on the TSCA Inventory at CAS Registry Number 64742-48-9 Clean Water Act/Oil Pollution Act:

This product is classified as an oil under Section 311 of the Clean Water Act (40 CFR 110) and the Oil Pollution Act of 1990. Discharge or spills which produce a visible sheen on either surface water, or in waterways/sewers which lead to surface water, must be reported to the National Response Center at 800-424-8802.

CERCLA:

If this product is accidentally spilled, it is not subject to any special reporting under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). We recommend you contact local authorities to determine if there may be other local reporting requirements.

SARA TITLE III:

Under the provisions of Title III, Sections 311/312 of the Superfund Amendments and Reauthorization Act, this product is classified into the following hazard categories: Fire.

This information may be subject to the provisions of the Community Right-to-Know Reporting Requirements (40 CFR 370) if threshold quantity criteria are met.

ExonMobil Chemica

MATERIAL SAFETY DATA SHEET

ExxonMobil Chemical Company

A Division of Exxon Mobil Corporation

DF-2000 FLUID

PAGE	•	6	
DATE	PREPARED:	JUN 16.	2000
MSDS	NO.:	92842580	3

SECTION 16 OTHER INFORMATION

NOTES:

Care must be taken to ensure garments cleaned with solvents are completely dry before being worn. Drycleaning solvent not totally removed from adsorbent clothing (e.g., shoulder pads, waist bands, etc.) that remains in contact with the skin for prolonged periods may cause skin irritation including redness, swelling and possibly blistering.

Contains approximately 10 ppm BHT as an antioxidant to protect product quality. HAZARD RATING SYSTEMS:

This information is for people trained in:

and the second second

National Paint & Coatings Association's (NPCA) Hazardous Materials Identification System (HMIS)

National Fire Protection Association (NFPA 704)

Identification of the Fire Hazards of Materials

	NPCA-HMIS	NFPA 704	KEY
HEALTH	1	1	4 = Severe
FLAMMABILITY	2	2	3 = Serious
REACTIVITY	0	0	2 = Moderate
			1 = Slight
4			O = Minimal

REVISION SUMMARY:

.

Since April 1, 2000 this MSDS has been revised in Section(s): 8

REFERENCE NUMBER:	SUPERSEDES ISSUE DATE:
HDHA-C-25233	April 1, 2000

THIS INFORMATION RELATES TO THE SPECIFIC MATERIAL DESIGNATED AND MAY NOT BE VALID FOR SUCH MATERIAL USED IN COMBINATION WITH ANY OTHER MATERIALS OR IN ANY PROCESS. SUCH INFORMATION IS TO THE BEST OF OUR KNOWLEDGE AND BELIEF, ACCURATE AND RELIABLE AS OF THE DATE COMPLED. HOWEVER, NO REPRESENTATION, WARRANTY ON GUARANTEE IS MADE AS TO ITS ACCURACY, RELIABILITY OR COMPLETENESS. IT IS THE USER'S RESPONSIBILITY TO SATISFY HIMSELF AS TO THE SUITABILITY AND COMPLETENESS OF SUCH INFORMATION FOR HIS OWN PARTICULAR USE. WE DO NOT ACCEPT LIABILITY FOR ANY LOSS OR DAMAGE THAT MAY OCCUR FROM THE USE OF THIS INFORMATION NOR DO WE OFFER WARRANTY AGAINST PATENT INFRINGEMENT.

Material Safety Data Sheet

t

3

Date Prepared: 04-20-0			MSI	DS No. G151001-2
			lentification And Use	
Product/Tradename: HYD	ROCLENE P.O.	3 .		
NFPA Designation: $0 = Min$			$\begin{array}{l} 2 \text{Reactivity} 0 \\ 3 = \text{Serious} 4 = \text{Seve} \end{array}$	ere
Manufacturer's Name: (Address: 26 Har		NJ 07470	Working Hou	rs (973) 696-7575
Chemical Name: Mixtu			Chemical Family: Spo	
Formula: Mixture	aar ger ger van jer van de konstanten van de kein het een de met in gere ger de teel weren.		Material Use: Stain R	emover
	Sect	ion II Hazard	ous Ingredients	
Hazardous Ingredients	Cas Number	Approx. Percent	Exposure Limits	Other
2-butoxy ethanol OSHA HAZ. COMBUSTIELE COMPONENT: HYDR	64742-47-8	10-15 10-15	25 PPM OSHA (PEL)TWA (SKIN) 20PPM ACGIH NO LISTING OSHA ACGIH 200PPM TWA (SUP)	DERMAL LD50
OSHA HAZ. COMBUS COMPONENT:HYDRO	T. 64742-48-9	10-30	200PPM TWA (SUP) 171PPM BASED ON SUPPLIER	TOTAL HYDROCARBON
	, 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	Section III Ph	ysical Data	
Physical State: Liquid	Odor And Ar	ppearance: clea	r, pale yellow, mild sol	vent odor
Specific Gravity Vapor 0.880 1	Pressure(Mm) Va Vd N		r=1) Ph 7.0 - 8.0	
Evaporation Rate Boi (Butyl Ace=1)slower	ling Point(F) % V ND	olatile(Vol) V 60	Water Solubility Dispersable	
	Section I	V Fire And Ex	plosion Hazard Data	
Flash Point(F) Method 150 F Extinguishing Media:	Ţ	Jpper: Nd	Air % By Volume Lower: Nd rbon Dioxide Dry Che	emical

1

HYDROCLENE P. O. G.

ł

Unusual 1	Fire And Ex	plosion Hazards: Section V	NONE KNOWN. 7 Reactivity Data
	Unstable	Conditions To Avoid:	
Stability	X Stable	None Known	
Incompa	tibility (Mate	erials To Avoid):	Oxidizing Agents Metals
Hazardo	us Decompos	sition Products:	Burning may produce carbon monoxide.
Hazardou Polymeri:	a May zation X Wi	Occur Conditions To ill Not Occur None Known	Avoid
		Section VI Healt	th And Toxicological Data
Route Of Skin Con Inhalation		Skin Absorption: Inhalation Chror	Eye Contact: X nic: Ingestion: X
INHALA and can c Small am SKIN & To produ INGEST	ause hemolys ounts in the f EYES: May ce effects sin ION: vomiti	ache, dizziness, nausea and lo sis, liver and kidney injury ba formulation. cause eye irritation and skin nilar to inhalation. ng, gastric upset and pain. 2-	oss of consciousness. Acutely toxic in high concentrations ased on 2-butoxy ethanol, although this is unlikely due to the deffatting. 2-butoxy ethanol is absorbed through the skin butoxy ethanol is moderately toxic by ingestion.
Has caus Carcino No Com Some let	ed cell hemol genicity, Rep	lysis, liver and kidney damag productive: Teratogenicity, ted As A Carcinogen By Ntp nals fetuses in concentration	in and lung disorder may be aggravated. 2-butoxy ethanol with overexposure in test animals. Mutagenicity , Iarc, Or Osha. Not mutagenic. 2-butoxy ethanol has shown well above the TLV. No Reproductive or teratogenic
Skin and irritation	d Eyes: Remo persits.	to fresh air. Apply artificial	

į

2

HYDROCLENE P. O. G.

Section VII Spill or Leaks Information

Steps To Be Taken If Material Is Released Or Spilled:

If locally permitted small spills can be flushed with water. Large spills should be dammed or vacuumed Into a close drum for disposal. Do not allow to flow into open waterway or ground water.

Waste Disposal Methods: In Accordance With Federal, State and Local Regulations.

aste Disposal Methods: III Accordance with Federal, State and Local Regulations.

Section VIII Special Protection Information

Respiratory Protection (Specify): Self contained breathing apparatus at high vapor concentration.

Ventilation (Mechanical - General, Local, Special) Mechanical-General: Use with adequate ventilation.

╸╸╸╸╸╸╸╸╸」、。	"我想想 神奇寺 没有 机化金金 前半 水水 有 马 有 化 有 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化
Gloves (Specify): Neoprene	Eye (Specify): Eye Goggles
**************	^{按条公告:} 于了这名言意:"你们是可以叫我帮我帮出我不可用想要你的意思这些我是没没能可能的人们都是这些你都能找到些帮你帮你帮你帮你??"

Other Protective Equipment:

Eye Wash Station and safety shower.

Section IX Special Precautions

Precautions To Be Taken In Handling And Storing

Do not freeze. Keep container closed when not in use. Do not store near open flame. Avoid excessive contact with skin and eyes. Do not inhale mists or vapor. Wash after use.

Special Shipping Information

Dot: Not regulated Un: Not regulated

Sara Title III, Section 313 Release Reporting And Other Covered Regulations

2-Butoxy Ethanol Is Listed Under Sara Title III, Section 313 Release Reporting.

Na = Not Applicable Nd = No Data Available Ne = Not Established <= Less Than >= Greater Than

Each Customer Is Encouraged To Study This MSDS Carefully To Become Aware Of And Understand The Associated Material Hazards. Proper Reference Works Should Be Consulted, As Necessary, To Use And Understand The Contained Data.

This MSDS Should Be Properly Routed To All Individuals Who Use Or May Come In Contact With This Product. Understand And Follow All Pertinent Employee And Community Right To Know Regulations. We Believe That The Statements, Technical Information And Recommendations Contained Herein Are Reliable, But Given Without Warranty Or Guarantee Of Any Kind, Express Or Implied, And We Assume No Responsibility For Any Loss, Damage, Or Expense, Direct Or Consequential, Arising From Their Use.

> . .

MATERIAL SAFETY DATA SHEET

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Pyratex[®] **GENERAL USE:** For professional drycleaning use only. **PRODUCT DESCRIPTION:** Stain Removal Agent

MANUFACTURER

R. R. Street & Co. Inc. 184 Shuman Boulevard Naperville, IL 60563 Phone: 800-323-7206

24 HR. EMERGENCY TELEPHONE NUMBERS

Medical Emergency: 800-228-5635 Transportation Emergency: 800-424-9300

2. COMPOSITION / INFORMATION ON INGREDIENTS

The specific identity of the component(s) of this product is withheld as a trade secret.

<u>Chemical Name</u>	<u>Wt.%</u>	CAS#	EINECS#
(trade secret #1)	-	_	_
(trade secret #2)	-	-	-
(trade secret #3)	-	-	_
(trade secret #4)	-	-	-
COMMENTS: #1 = aliphatic carboxylic ester #2 = glycol ether, <30%			

#3 = aliphatic ketone, <15%.

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS

EYES: Substance may cause substantial eye irritation and possible damage.
SKIN: May cause skin irritation.
SKIN ABSORPTION: May penetrate skin readily resulting in absorption of potentially harmful amounts.
INGESTION: Moderately toxic. May be absorbed and cause central nervous system depression; in extreme cases unconsciousness and death. May cause vomiting.
INMALATION: Extreme concentrations may cause unconsciousness or death.

SIGNS AND SYMPTOMS OF OVEREXPOSURE

EYES: Severe irritation. SKIN: Irritation. SKIN ABSORPTION: No data available. INGESTION: Headache, dizziness, nausea, vomiting, fatigue and diarrhea; digestive tract irritation. INHALATION: Headache, dizziness, nausea, narcosis and irritation of the respiratory tract.

ACUTE TOXICITY: If ingested, vomiting may occur; vomit may be aspirated into lungs causing chemical pneumonia. CHRONIC: Prolonged or repeated contact may cause dermatitis. CARCINOGENICITY: Not applicable. MUTAGENICITY: Not applicable.

OTHER EFFECTS REPRODUCTIVE EFFECTS: See section 11. TERATOGENIC EFFECTS: Not applicable.

3. HAZARDS IDENTIFICATION (continued)

MEDICAL CONDITIONS AGGRAVATED: Pre-existing eye, skin and respiratory disorders. ROUTES OF ENTRY: Inhalation and skin. TARGET ORGAN STATEMENT: See section 11. CANCER STATEMENT: Does not contain any substance(s) listed as carcinogenic. SENSITIZATION: Not applicable.

4. FIRST AID MEASURES

EYES: Immediately flush eyes with plenty of water for at least 15 minutes. Get immediate medical attention. **SKIN:** Remove contaminated clothing. Wash with soap and water.

INGESTION: Get immediate medical attention. Do not induce vomiting unless instructed to do so by poison center or physician.

INHALATION: Remove to fresh air. If not breathing, give artificial respiration. Get medical attention.

ADDITIONAL INFORMATION: After emergency actions, call the emergency medical information number on page 1 or a physician immediately.

5. FIRE FIGHTING MEASURES

FLASHPOINT AND METHOD: 40°C (104°F)COC
FLAMMABLE LIMITS: 1-2 to 7.5-15
AUTOIGNITION TEMPERATURE: 244°C (471°F) to 449°C (840°F)
FLAMMABLE CLASS: NFPA Class IC
EXTINGUISHING MEDIA: Carbon dioxide, dry chemical, foam, water spray or fog.
HAZARDOUS COMBUSTION PRODUCTS: Carbon dioxide, carbon monoxide.
FIRE FIGHTING EQUIPMENT: As in any fire, wear self-contained breathing apparatus pressure-demand, (MSHA/NIOSH approved or equivalent) and full protective gear.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL: Absorb the liquid and scrub the area with detergent and water.

LARGE SPILL: Extinguish all ignition sources. Avoid breathing vapor. Contain spill. Clean up spills immediately with absorbent material, observing precautions in the Protective Equipment section. Place absorbed material in closed containers for disposal. Do not flush to sewer. Avoid contamination of ground and surface waters.

7. HANDLING AND STORAGE

GENERAL PROCEDURES: Keep away from heat, sparks and flame. HANDLING: Follow all MSDS/label precautions even after container is emptied because it may retain product residues. STORAGE: Store in labeled, tightly sealed containers in a cool, well ventilated area. SHELF LIFE: 1 year, minimum. ELECTROSTATIC ACCUMULATION HAZARD: Ground and bond containers when transferring material.

(SEE NEXT PAGE FOR SECTION 8.)

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE GUIDELINES:

OSHA HAZARDOUS COMPONENTS (29 CFR 1910.1200)

		<u>EXPO</u>	SURE L	IMITS			
		<u>OSH</u> A	PEL	ACG	H TLV	Suppl	ier OEL
· · · · · · · · · · · · · · · · · · ·		<u>ppm</u>	mg/m ³	ppm	mg/m^3	<u>ppm</u>	mg/m ³
(trade secret #1)	TWA	150		150			
	STEL	NE ^[1]		200			
(trade secret #2)	TWA	50* ^[2]		20			
	STEL	NE		NE			
(trade secret #3)	TWA	100		50			
	STEL	NE		75			
(trade secret #4)	TWA	NE		NE			
	STEL	NE		C 25			

OSHA TABLE COMMENTS: 1. NE=Not established. 2. * = Skin

The specific identity of the component(s) of this product is withheld as a trade secret.

ENGINEERING CONTROLS: Local exhaust may be required to control vapor concentration.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Wear safety glasses with side shields (or goggles) and a face shield.

SKIN: Wear butyl or Barrier[™] gloves.

RESPIRATORY: NIOSH/MSHA approved air purifying respirator with an organic vapor cartridge or canister may be permissible under certain circumstances where airborne concentrations are expected to exceed exposure limits. Protection provided by air purifying respirators is limited. Use a positive pressure air supplied respirator if there is any potential for an uncontrolled release, exposure levels are not known, or any other circumstances where air purifying respirators may not provide adequate protection.

PROTECTIVE CLOTHING: Where contact is likely, wear chemical resistant gloves, a chemical suit, rubber boots, and chemical safety goggles plus a face shield.

WORK HYGIENIC PRACTICES: Wash thoroughly after handling. Do not smoke in presence of vapor. Do not eat or drink in work area.

OTHER USE PRECAUTIONS: Have eye wash station available. Do not wear contact lenses without eye protection.

9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: Liquid. ODOR: Mild. APPEARANCE: Clear. COLOR: Light yellow to amber. pH: 8 PERCENT VOLATILE: 72 VAPOR PRESSURE: ~8 mm Hg at 20°C VAPOR DENSITY: ~4 (Air=1) BOILING POINT: ~110°C (230°F) FREEZING POINT: <0°C (32°F) SOLUBILITY IN WATER: Dispersible. EVAPORATION RATE: ~0.6 Butyl acetate = 1 SPECIFIC GRAVITY: 0.91 COEFF. OIL/WATER: No data available. ODOR THRESHOLD: 0.1 pp://

COMMENTS: PERCENT VOLATILE: Approximate. BOILING POINT: Initial boiling point.

10. STABILITY AND REACTIVITY

STABLE: YES HAZARDOUS POLYMERIZATION: NO CONDITIONS TO AVOID: None. STABILITY: Stable. POLYMERIZATION: Will not occur. INCOMPATIBLE MATERIALS: Oxidizing materials.

11. TOXICOLOGICAL INFORMATION

ACUTE

ORAL LD₅₀: ~1600 mg/kg (rat)

INHALATION LC₅₀: ~450-6000 ppm (rat)

TARGET ORGANS: A component of this product has caused hemolysis of blood in rats; not considered relevant to humans. Rats exposed to 1000 ppm of a component of this product for 90 days showed evidence of kidney damage; not considered relevant to humans.

CARCINOGENICITY

IARC: Not listed as a carcinogen. NTP: Not listed as a carcinogen. OSHA: Not listed as a carcinogen.

SYNERGISTIC MATERIALS: Possibly haloalkanes.

REPRODUCTIVE EFFECTS: A component of this product showed some fetotoxicity in lab animals exposed to high concentrations.

GENERAL COMMENTS: Refer to Section 3 for additional information on potential health effects.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: The major components have low persistence in the environment and have low aquatic toxicity.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Recovered liquids may be sent to a licensed reclaimer or incineration facility. Contaminated material must be disposed of in a permitted waste management facility. Consult federal, state and local authorities for approved procedures.

EMPTY CONTAINER: Do not cut or weld full or empty drums.

RCRA/EPA WASTE INFORMATION: Contains material(s) listed by RCRA as a hazardous waste.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATION)

PROPER SHIPPING NAME: Flammable Liquid, NOS TECHNICAL NAME: Aliphatic carboxylic ester, Aliphatic ketone PRIMARY HAZARD CLASS/DIVISION: 3 UN/NA NUMBER: UN1993 PACKING GROUP: III LABEL: Cases of 6 one-gallon cans and individual one-gallon cartons

LABEL: Cases of 6 one-gallon cans and individual one-gallon cartons are Limited Quantities. No Flammable Liquid (Class 3) label required when shipped by ground.

CANADA TRANSPORT OF DANGEROUS GOODS

PROPER SHIPPING NAME: Flammable Liquid, NOS PRIMARY HAZARD CLASS/DIVISION: 3 UN/NA NUMBER: UN1993 PACKING GROUP: III

14. TRANSPORT INFORMATION (continued)

AIR (ICAO/IATA) PROPER SHIPPING NAME: Flammable Liquid, NOS PRIMARY HAZARD CLASS/DIVISION: 3 UN/NA NUMBER: UN1993 PACKING GROUP: III PLACARDS: Consult applicable regulations governing air shipments. LABEL: Flammable Liquid (Class 3) label required when shipped by air. IATA NOTE: Consult applicable regulations on packaging requirements and quantity limitations.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)
 311/312 HAZARD CATEGORIES: FIRE: YES PRESSURE GENERATING: NO REACTIVITY: NO ACUTE: YES CHRONIC: YES
 313 REPORTABLE INGREDIENTS: Ingredients 2 and 3 are reportable.

CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

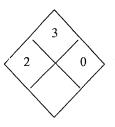
CERCLA RQ: One or more ingredients has an RQ of 5000 lbs. **REPORTABLE SPILL QUANTITY:** > 1000 gals **RCRA STATUS:** See section 13.

STATE REGULATIONS

MASSACHUSETTS: Contains one or more substances named on the Massachusetts Substance List. Code # 99-013-012. **CALIFORNIA:** PROPOSITION 65 STATEMENT: Not applicable.

CANADA

WHMIS CLASS: Class B, Division 2 and Class D, Division 2


MEXICO

Regulated for transportation.

16. OTHER INFORMATION

HMIS RATINGS:	
HEALTH:	2
FLAMMABILITY:	3
REACTIVITY:	0
PERSONAL PROTECTION:	Η

NFPA RATINGS:

- Page 1 of 7

MATERIAL SAFETY DATA SHEET

Date-Issued: 08/04/2000 MSDS Ref. No: P-3 Date-Revised: 08/08/2000 Revision No: New MSDS

Picrin

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Picrin GENERAL USE: For professional drycleaning use only. PRODUCT DESCRIPTION: Stain Removal Agent PRODUCT CODE: PIC-US

MANUFACTURER

R. R. Street & Co. Inc. 184 Shuman Boulevard Naperville, IL 60563 Product Stewardship: 800-323-7206 Transportation: 800-424-9300

24 HR. EMERGENCY **TELEPHONE NUMBERS** Emergency Phone: 800-228-5635

Wt.%

2. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name

Trichloroethylene

CAS# EINECS# ~ 100 79-01-6

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS

EYES: Substance may cause substantial eye irritation and possible damage.

SKIN: May cause skin irritation.

SKIN ABSORPTION: Absorption through skin is possible but not a likely route of significant exposure.

INGESTION: Low to moderate toxicity. May cause vomiting. Can cause adverse health effects as described under INHALATION.

INHALATION: High concentrations can cause central nervous system depression, irregular heartbeat, cardiac arrest, unconsciousness or death.

SIGNS AND SYMPTOMS OF OVEREXPOSURE

EYES: Irritation and pain.

SKIN: Irritation.

SKIN ABSORPTION: No data available.

INGESTION: Nausea and vomiting.

INHALATION: Headache, nausea, vomiting, dizziness, vertigo, fatigue, lightheadedness and coughing.

Picrin®

ACUTE TOXICITY:

If ingested, vomiting may occur; vomit may be aspirated into lungs causing chemical pneumonia.

CHRONIC:

Exposure can cause intolerance to ethyl alcohol, with small quantities causing inebriation and skin blotches. Prolonged or repeated contact may cause dermatitis.

CARCINOGENICITY:

See section 11.

MUTAGENICITY:

See section 11.

REPRODUCTIVE TOXICITY

REPRODUCTIVE EFFECTS: See section 11.

TERATOGENIC EFFECTS: Not applicable.

MEDICAL CONDITIONS AGGRAVATED: Alcoholism, liver disease, rhythm disorders of the heart, neuritis.

ROUTES OF ENTRY: Inhalation and skin.

TARGET ORGAN STATEMENT: See section 11.

CANCER STATEMENT: See section 11.

SENSITIZATION: Not applicable.

4. FIRST AID MEASURES

EYES: Immediately flush eyes with plenty of water for at least 15 minutes. Get immediate medical attention.

SKIN: Remove contaminated clothing. Wash with soap and water.

INGES TION: Get immediate medical attention. Do not induce vomiting unless instructed to do so by poison center or physician.

INHALATION: Remove to fresh air. If not breathing, give artificial respiration. Get medical attention.

ADDITIONAL INFORMATION: After emergency actions, call the emergency medical information number on page 1 or a physician immediately.

5. FIRE FIGHTING MEASURES

FLASHPOINT AND METHOD: None.

AUTOIGNITION TEMPERATURE: Not applicable.

FLAMMABLE CLASS: Not applicable.

EXTINGUISHING MEDIA: Not applicable.

HAZARDOUS COMBUSTION PRODUCTS: Carbon dioxide, carbon monoxide. OTHER CONSIDERATIONS: Concentrated vapor can be ignited by high-intensity ignition source.

FIRE FIGHTING EQUIPMENT: As in any fire, wear self-contained breathing apparatus pressure-demand, (MSHA/NIOSH approved or equivalent) and full protective gear. FLASHPOINT: (footnote) TCC

HAZARDOUS DECOMPOSITION PRODUCTS: Hydrogen chloride, phosgene and chlorine.

6. ACCIDENTAL RELEASE MEASURES

SMALL SPILL:

Absort the liquid and scrub the area with detergent and water.

LARGE SPILL:

Contain spill. Avoid breathing vapor. Clean up spills immediately with absorbent material, observing precautions in the Protective Equipment section. Place absorbed material in closed containers for disposal. Do not flush to sewer. Avoid contamination of ground and surface waters.

7. HANDLING AND STORAGE

HANDLING:

Follow all MSDS/label precautions even after container is emptied because it may retain product residues.

STORAGE:

Store in labeled, tightly sealed containers in a cool, dry, well ventilated area. **SHELF LIFE:** 1 year, minimum.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION EXPOSURE GUIDELINES:

OSHA HAZARDOUS COMPONENTS (29 CFR 1910.1200)

EXPOSURE LIMITS

OSHA PEL ACGIH TLV Supplier OEL

	ppm mg/m ³	ppm	<u>mg/m'</u>	<u>ppm</u>	mg/m ³
TWA	100	50*m			
STEL	200[2]	100			

OSHA TABLE COMMENTS:

1. * = A5

Trichloroethylene

2. Ceiling concentration. 300 ppm peak concentration allowed once in any 2 hour period. ENGINEERING CONTROLS: Local exhaust may be required to control vapor concentration.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Wear safety glasses with side shields (or goggles) and a face

SKIN: Wear Viton(r), PVA, or Barrier(tm) gloves.

RESPIRATORY: NIOSH/MSHA approved air purifying respirator with an organic vapor cartridge or canister may be permissible under certain circumstances where airborne concentrations are expected to exceed exposure limits. Protection provided by air purifying respirators is limited. Use a positive pressure air supplied respirator if there is any potential for an uncontrolled release, exposure levels are not known, or any other circumstances where air purifying respirators may not provide adequate protection.

PROTECTIVE CLOTHING: Where contact is likely, wear chemical resistant gloves, a chemical suit, rubber boots, and chemical safety goggles plus a face shield.

WORK HYGIENIC PRACTICES: Wash thoroughly after handling. Do not smoke in presence of vapor. Do not eat or drink in work area.

OTHER USE PRECAUTIONS: Have eye wash station available. Do not wear contact lenses without eye protection.

9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: Liquid. **ODOR:** Ethereal. APPEARANCE: Clear.

COLOR: Colorless.

pH: Not applicable.

PERCENT VOLATILE: 100

VAPOR PRESSURE: 58 mm Hg at 20°C

VAPOR DENSITY: 4.5 (Air=1)

BOILING POINT: 87°C (188°F)

FREEZING POINT: -85°C (-121°F)

SOLUBILITY IN WATER: Negligible.

EVAPORATION RATE: 4.5 Butyl acetate = 1

SPECIFIC GRAVITY: 1.45

COEFF. OIL/WATER: 2.42

ODOR THRESHOLD: 20 ppm

10. STABILITY AND REACTIVITY

STABLE: YES

HAZARDOUS POLYMERIZATION: NO

CONDITIONS TO AVOID: Contact with open flame, electric arcs, other hot surfaces which can cause thermal decomposition.

STABILITY: Stable.

POLYMERIZATION: Will not occur.

HAZARDOUS DECOMPOSITION PRODUCTS: Hydrogen chloride, phosgene and chlorine.

INCOMPATIBLE MATERIALS: Strong alkalies, oxidizers, lithium, aluminum, barium, magnesium, titanium.

11. TOXICOLOGICAL INFORMATION

ACUTE

DERMAL LD₅₀: >10000 mg/kg (rabbit)

ORAL LD₅₀: >5000 mg/kg (rat)

INHALATION LC₅₀: >2000 ppm (rat)

TARGET ORGANS: Chronic overexposure to trichloroethylene has caused toxic effects in the liver, lymphatic (one species), kidney and cardiovascular system of experimental animals.

SUBCHRONIC:

Reports have been published associating increased incidences of scleroderma (systemic sclerosis) with exposures to trichloroethylene.

CARCINOGENICITY:

IARC: Trichloroethylene is classified as 2A.

NTP: Trichloroethylene is on the NTP list.

OSHA: Not listed as a carcinogen.

MUTAGENICITY: Evidence for trichloroethylene is equivocal.

SYNERGISTIC MATERIALS: Consumption of alcohol may increase the potential for development of toxic effects resulting from exposure to trichloroethylene.

REPRODUCTIVE EFFECTS: Some transient fetal effects from inhalation of trichloroethylene have been observed in rats.

GENERAL COMMENTS: Refer to Section 3 for additional information on potential health effects.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: Trichloroethylene has moderate persistence in the environment.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Recovered liquids may be sent to a licensed reclaimer or incineration facility. Contaminated material must be disposed of in a permitted waste management facility. Consult federal, state and local authorities for approved procedures.

EMPTY CONTAINER: Do not cut or weld full or empty drums.

RCRA/EPA WASTE INFORMATION: Contains material(s) listed by RCRA as a hazardous waste.

14. TRANSPORT INFORMATION

DOT (DEPARTMENT OF TRANSPORTATION)

PROPER SHIPPING NAME: Trichloroethylene

PRIMARY HAZARD CLASS/DIVISION: 6.1

UN/NA NUMBER: UN1710

PACKING GROUP: III

REPORTABLE QUANTITY (RQ) UNDER CERCLA: 8 gal

OTHER SHIPPING INFORMATION: One gallon containers in original packaging are labeled, marked, and approved for ground shipments only. Drums of this product contain a Reportable Quantity of trichloroethylene.

CANADA TRANSPORT OF DANGEROUS GOODS

PROPER SHIPPING NAME: Trichloroethylene

PRIMARY HAZARD CLASS/DIVISION: 6.1

UN/NA NUMBER: UN1710

PACKING GROUP: III

AIR (ICAO/IATA)

PROPER SHIPPING NAME: Trichloroethylene

PRIMARY HAZARD CLASS/DIVISION: 6.1

UN/NA NUMBER: UN1710

PACKING GROUP: III

IATA NCTE: One gallon containers when in original packaging are not approved for air shipment. Consult IATA for quantity limitations.

Page 7 of 7

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

311/312 HAZARD CATEGORIES:

FIRE: NO PRESSURE GENERATING: NO REACTIVITY: NO ACUTE: YES CHRONIC: YES

313 REPORTABLE INGREDIENTS: Trichloroethylene is reportable. CERCLA (COMPREHENSIVE RESPONSE, COMPENSATION, AND LIABILITY ACT)

CERCLA RQ: Trichloroethylene has an RQ of 100 lbs.

REPORTABLE SPILL QUANTITY: 8 gals

RCRA STATUS: See section 13.

CANADA

WHMIS CLASS: Class D, Division 2

MEXICO

Regulated for transportation.

STATE REGULATIONS

MASSACHUSETTS

Contains one or more substances named on the Massachusetts Substance List. CALIFORNIA

PROPOSITION 65 STATEMENT: Trichloroethylene is on Proposition 65 list.

16. OTHER INFORMATION

REVISION SUMMARY New MSDS NFPA CODES HEALTH: 2 FIRE: 1 REACTIVITY: 0 HMIS CODES HEALTH: 3 FIRE: 1 REACTIVITY: 0 PROTECTION: H identity

ŧ

RustGo[®]

SECTION I

manufacturer A. L. Wilson Chemical Co.	emergency telephone number	800-424-9300
1050 Harrison Ave. P. O. Box 207	telephone number for information	201-997-3300
Kearny, NJ 07032	date prepared April 9, 1999	

SECTION II - IMPORTANT INGREDIENTS/IDENTITY INFORMATION

important components	chemical identity	Сав	8	tlv
HYDROFLUORIC ACID *	HF	7664-39-3	12% approx.	3.0 PPM ACGIH
AMMONIUM BIFLUORIDE	NH4 HF2	1341-49-7	16% approx.	2.4Mg/M ³
WATER	H ³ O	7732-16-5		_
* Subject to SARA, Tit	tle III, Section 313	and 40 CFR	372.	

SECTION III - PHYSICAL/CHEMICAL CHARACTERISTICS

boiling point. ND	specific gravity (H. O=1) 1.1 approx.
vapor pressure (mm Hg) ND	melting point NA
vapor density (air=1) ND	evaporation rate (butyl acetate=1) ND
solubility in water 100%	
appearance and odor colorless liquid, sharp odor	

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

 flash point NA	(method used)	flammable NA	limits
 extinguishing media	water or carbon	dioxide "CO; '	" for fires in area
special fire fightin	ig procedures		
 unusual fire and exp	losion hazards N	IA	

SECTION V - REACTIVITY DATA

stability stable	conditions to avoid Avoid contact with strong alkalis, metals or high temperature.
<pre>incompatibility (materials to a strong alkalis, metals or other incompatibility (materials or other incompatibility (materials to a strong alkalis, metals or other incompatibility (materials to a strong alkalis)</pre>	
hazardous decomposition product With metals can release poter At decomposition emits highly	s tially dangerous hydrogen gas. corrosive fluoride fumes.
hazardous polymerization will	not occur

See Page 2 for more information.

RustGo[®] - Page 2 of 2 SECTION VI - HEALTH HAZARD DATA effects of overexposure May cause permanent damage. Eves: May cause severe burns which may not be immediately painful or visible, and may penetrate skin and damage underlying tissue. Skin: May cause throat burns and severe swelling restricting Ingestion: bréathing. Concentration of "F" vapors of 2Mg/M³ or more may cause damage to lungs, respiratory system and pulmonary edema. Inhalation: first aid In each case of overexposure, after first aid treatment, see a physician as soon as possible thereafter. Flush immediately with large quantities of clean cool water for at least 15 minutes. (Hold eyelids apart if necessary.) Eyes: Flush immediately with large quantities of water. (Shower if available.) Remove contaminated clothing. Skin: Do not induce vomiting. Immediately drink large quantity of milk or water with added milk of magnesia. Ingestion: Immediately remove victim from source of exposure. Inhalation:

SECTION VII - PRECAUTIONS FOR SAFE HANDLING AND USE

steps to be taken in case material is released or spilled Cover area with sodium bicarbonate to neutralize acid. Scoop up and dispose of as below.

waste disposal method Dispose of in accordance with federal, state and local regulations.

precautions to be taken in handling and storing Do not get in eyes, on skin or on clothing. Do not breathe vaper. Wash thoroughly after handling.

other precautions Do not use if pregnant.

SECTION VIII - CONTROL MEASURES

respiratory protection Above 20 ppm of "F" wear OSHA permissible gas mask or	cartridge.	ventilation local exhaust
protective gloves PVC or neoprene	eye protec chemical	ction Esplash goggles
other protective clothing or equivalent apron	quipment	
work/hygienic practices Wash thoroughly after handlin	ng, Do not	smoke, eat or drink in work area

NA = Not Applicable ND = Not Determined See Page 1 for more information.

A.L. HILDUN

kej v v

MATERIAL SAFETY DATA SHEET

P	RODUCT		AMYL ACE	TATE	
1			NFPA HAZARD RATI	NGS*	
Al.		Health	1 Slight health hazard		$\langle 1 \times 0 \rangle$
	4C.	Fire	3 Highly Flammable		\times
	Decendation Since 1	Reactivit	y 0 Nonreactive		\sim
		SECTION	1: PRODUCT INFORM	ATION	
Manufacturer: ADCO, Inc., 9 EMERGENCY TELEPHONE Intended Product Use:	NUMBERS	: CHEMTREC (AC)(1) A2A-03(() (2A UDE 7 h		801 7556 (0 = M F)
Synonyms:		oval agent for drycl tate, Banana oil	eaning and laundry		
	L.	SECTION	12: HAZARDOUS ING	REDIENTS	
Chemical Name Amyl acetate		% 99-100	CAS # 628-63-7	OSHA PEL 100 ppm TWA	LD 50
					oral: 6500 mg/kg (rat)
		SEC	CTION 3: PHYSICAL D	ATA	
Appearance:		ess liquid		Boiling Point : 288*F	
Odor: Specific Gravity (20° C):	Banana 0.876			Sclubility in Water: 0.2 wt. %	
pH (Water Solution):	No data		- Vapor F	Pressure (mm Hg) 4 @ 20°C	
			-	Vapor Density: Heavier th	an Bir
		SECTION 4: F	IRE AND EXPLOSION	HAZARD DATA	
					the second s
lash Point (Method)("F):	100 (TO	and some succession of the second second second	Ower Flamm	nable Limit 7.1 nable Limit: 7.5	
xtinguishing Media: pecial Fire Fighting Procedure		Foarti water tog.	carbon dioxide or dry chemical		
e e suite de la grantig à recebuie		Dreci water stream	m may disperse products produ	king a floating fire hazard.	
nusual Fire and Expression Haz	ards:	Vapors are heavier	r than air and may travel along	OFOUND TO & SOURCE OF DOCUMENT	
				ground to a court of ginton.	
		SECTI	ON 5: REACTIVITY DA	TA	
ability	Since?	02011			
	Stadie			s to Avoid: Excessive Heat	
compatibility (materials to avoid)	Strong acids, stron None	g alkalis		
zardous Decomposition Produzations	icts:	Will not occur.			
		SECTIO	N 6: HEALTH HAZARD	DATA	
icity (Estimated).	Low	-			
ects of	Anda	Eve and ekin initation			
erexposure	Aarte:	effects including dizz	In Excessive inhalation of vapors	S CHIN CALLSE NASAL and respiratory is	nitation and central narvous system
		gastrointeetinal irrhati	ion, nausea, vomiting and diant	ea neadache and possible uncons	dousness. Swallowing can cause
	Chronic:	No adverse effects an	icipated from available informatio	n However wer stonmaking in	damage, spleen damage and kidney
cinogenicity:	None of the				
and geneeny.	INCINE OF ING	ingreatents in this pro	duct have been identified as a c	carchogen or probable carcinoper	DV ACGIH ISBC or DOHA

"Hazard ratings and other information are based on latest available information from tests on product or ingredients of mixtures. The data and evaluations are accurate to the best of ADCO's knowledge. No guarantee or liability is expressed or implied.

EXPOSURE LIMITS	IRRITANCY OF PRODUCT	SENSITIZATION TO PRODUCT	
1(Ω) μαση ΤΥ/Α	Mild eye Brid skin	None reported	Ho components are usted ACGIH, IARC, or OSHA
TERATOGENICITY	FEPRODUCTIVE TOXICITY	MUTAGENICITY	SYNERGISTIC PRODUCT
No effects reported	No effects reported	None reported	Nona reported
	Based on known toxicity of compo	nents No test data available on mixture	
	SECTION 7: PREV	ENTATIVE MEASURES	
SPECIAL PROTECTION INFORM	ATION		
Respiratory Protectio	n: None required when used as di areas, self-contained breathing	rected with adequate veniliation. When a apparatus is recommended	ean ng op laige spills in contine
Ventilatio	n: Local exhaust at work station re	commended.	
Protective Glove	s: Ordina 1!y not needed. Use rubb	per gloves when contact is prolonged or l	expuent.
Eye Protectio			
Other protection equipment	ordinarily not needed. Availability c)f eye washes and adequate ventilation (n work areas recommended
STORAGE AND HANDLING:	Store in closed containers away aceguate ventilation. Keep oper be grounded during transfer.	from any source of Igrittion. When transf flarnes, hot surface and other ignition so	erring or using product, provide urcas away. Metal containers si
SPILE OR LEAK PROCEDURES;	Small spill - absorb on absorber	n material and transfer to fume hood juan y to drains, Pump or vacuum to clean co	ge spills - sliminate sources of ig ntamer for recovery or absorri o
WASTE DISPOSAL METHOD:	nonhazardous waste. Containe	absorpent. Contaminaten absorpent ca ers: Empty containers should be washa	n ther tie sent to a fandhi as
	Tense of disposal to bravent th	e or explosive hazard	
RECOMMENDED PRECAUTIONAR		re or explosive hazard.	
CAUTION. FLAMMABLE - Keep aw Use with adequate venti	AY LABELING:	e or explosive hazard. FIRST AID - Remove parson overcom	ie by vapors to fresh air. Filish e Ash off or skir, with soar, and wa
CAUTION. FLAMMABLE - Keep aw Use with adequate venti with skip and eyes. May	IY LABELING: ay from heat and open flames, lation: Avoid prolonged contact	e or explosive hazard. FIRST AID - Remove parson overcom 15 minutes with water 193	ie by vapois to fresh air. Filish e Ash offici skir, with soar, and wai
CAUTION. FLAMMABLE - Keep aw Use win adequate venti with skip and eyes. May shallowed.	IY LABELING: ay from heat and open flames, lation: Avoid prolonged contact cause initiation, Harmful if	e or explosive hazard. FIRST AID - Remove parson overcom 15 minutes with water M swallowers, induce vom (r	ie by vapois to fresh air. Filish e Ash offici skir, with soar, and wai
CAUTION. FLAMMABLE - Keep aw Use with adequate ventl with skit and eyes. May shallowed. KEEP OUT OF REACH OF CHULDR	IY LABELING: Pay from heat and open flames, lation: Avoid prolonged contact cause instation, Harmful if REN. DO NOY TAKE INTERNALL	e or explosive hazard. FIRST AID - Remove parson overcom 15 minutes with water M swallowers, induce vom (r	ie by vapois to fresh air. Filish e Ash offici skir, with soar, and wai
CAUTION. FLAMMABLE - Keep aw Use with adequate ventl with skit and eyes. May shallowed. KEEP OUT OF REACH OF CHULDR	IY LABELING: vay from heat and open flames, lation: Avoid prolonged contact cause initiation, Harmful if REN. DO NOY TAKE INTERNALL nal use only by trained personnel.	e or explosive hazard. FIRST AID - Remove parson overcom 15 minutes with water M swallowers, induce vom (r	ie by vapois to fresh air. Filistr e Ash dif or skir, with soar, and wat
CAUTION. FLAMMABLE - Keep aw Use with adequate venti- with skip and eyes. May smallowed. KEEP OUT OF REACH OF CHILDR Ints product is intended for protession	IY LABELING: (ay from heat and open flames, lation: Avoid prolonged contact cause instation, Harmful if REN. DO NOY TAKE INTERNALL nal use only by trained personnel. SECTION i me by vapors to fresh air, Give oxyo or 15 minutes.	FIRST AID - Remove parson overcom 15 minutes with water W swallowers, induce vom tr 9. FIRST AID	ie by vapors to fresh air. Filish e Ash dif or skir, with soar, and wat
Mith shit and eyes. May smallowed. KEEP OUT OF REACH OF CHILDR fris product is intended for profession fris profession	IY LABELING: (ay from heat and open flames, lation: Avoid prolonged contact cause instation, Harmful if REN. DO NOY TAKE INTERNALL nal use only by trained personnel. SECTION i me by vapors to fresh air, Give oxyo or 15 minutes.	 FIRST AID Remove parson overcom 15 minutes with water Waswallower, induce vom tr swallower, induce vom tr Y. 8: FIRST AID 	ie by vapors to fresh air. Filish e Ash dif or skir, with soar, and wat
CAUTION. FLAMMABLE - Keep aw Use with adequate vent with skit and eyes. May shallowed. KEEP OUT OF REACH OF CHILDR fors product is intended for profession for alation. <u>Remove person overcoon</u> Eyes. <u>Flush eyes with water for</u> Skin: Wash off of skir with so	IY LABELING: ray from heat and open flames, lation: Avoid prolonged contact cause instation, Harmful if REN. DO NOY TAKE INTERNALL nal use only by trained personnel. SECTION i me by vapors to fresh air, Give oxyg or 15 minutes. ap and water mitting, after having conscious victim	 FIRST AID - Remove parson overcom 15 minutes with water Wi swallowers, induce vom tr Y. B: FIRST AID en or respiration if neeosd drink two glasses of water 	ie by vapors to fresh air. Filish e Ash dif or skir, with soar, and wat
CAUTION. FLAMMABLE - Keep aw Use with adequate vent with skit and eyes. May shallowed. KEEP OUT OF REACH OF CHILDR fors product is intended for profession for alation. <u>Remove person overcoon</u> Eyes. <u>Flush eyes with water for</u> Skin: Wash off of skir with so	IY LABELING: ray from heat and open flames, lation: Avoid prolonged contact cause initiation, Harmful if REN. DO NOT TAKE INTERNALL nal use only by trained personnel. SECTION i me by vapors to fresh air, Give oxygor or 15 minutes, ap and water miting, after having conscious victim IF SYMPTOMS PERSIST, SEE	 FIRST AID - Remove parson overcom 15 minutes with water Wi swallowers, induce vom tr Y. B: FIRST AID en or respiration if neeosd drink two glasses of water 	ie by vapors to fresh air. Filish e Ash dif or skir, with soar, and wat
CAUTION. FLAMMABLE - Keep aw Use with adequate vent with skit and eyes. May shallowed. KEEP OUT OF REACH OF CHELDR fris product is intended for profession fris product is intended for profession Eyes. Flush eyes with water to Skin: Wash of of skirr with so Inglesson: It swallowed, induce vor	IY LABELING: ray from heat and open flames, lation: Avoid prolonged contact cause initiation. Harmful if REN. DO NOT TAKE INTERNALE hall use only by trained personnel. SECTION i me by vapors to fresh air, Give oxyg or 15 minutes. ap and water IF SYMPTOMS PERSIST, SEE SECTION 9: a which are under the reprove requirements of	FIRST AID Remove parson overcom 15 minutes with water Wi swallower, induce vom tr 9. 8. FIRST AID en or respiration if needed drink two glasses of water K MEDICAL ASSISTANCE	ie by vápors to fresh air. Filijsh e tan cif or skir, with soar, an diwat ig Call physician
CAUTION. FLAMMABLE - Keep aw Use with adequate vent with skit and eyes. May shallowed. KEEP OUT OF REACH OF CHELDR Instation Remove person overco Eyes. Flush eyes with water to Skin: Wash off of skir, with so Inglestoch: Its wallowed, induce vor	IY LABELING: ray from heat and open flames, lation: Avoid prolonged contact cause instation, Harmful if REN. DO NOY TAKE INTERNALL REN. DO NOY TAKE INTERNALL REN. DO NOY TAKE INTERNALL IS SECTION I SECTION I IF SYMPTOMS PERSIST, SEE SECTION 9: a which are under the reporting requirements of reconsole components.	FIRST AID - Remove parson overcom 15 minutes with water With swallowers, induce vom tr 9. 8: FIRST AID en or respiration if neeoed drink two glasses of water K MEDICAL ASSISTANCE SARA TITLE III	ie by vápors to fresh air. Filijsh e tan cif or skir, with soar, an diwat ig Call physician
CAUTION. FLAMMABLE - Keep aw Use with adequate vent with skin and eyes. May smallowed. KEEP OUT OF REACH OF CHILDR Instantion Remove person overco Eyes. Flush eyes with water to Skin: Wash of of skin with so Ingestion: It swallowed, induce vor	IY LABELING: ray from heat and open flames, lation: Avoid prolonged contact cause initiation, Harmful if IEN. DO NOY TAKE INTERNALL nature only by trained personnel. SECTION i me by vapors to fresh air, Give oxygor or 15 minutes, ap and water IF SYMPTOMS PERSIST, SEE SECTION 9: a which are under the reporting registerments of Technole components.	FIRST AID FIRST	ie by vapors to fresh air Fliush e ton ditor skin, with soap and with ig Call physician Call physician
CAUTION. FLAMMABLE - Keep aw Use with adequate vent with skin and eyes. May smallowed. KEEP OUT OF REACH OF CHILDR Instantion Remove person overco Eyes. Flush eyes with water to Skin: Wash of of skin with so Ingestion: It swallowed, induce vor	IY LABELING: ray from heat and open flames, lation: Avoid prolonged contact cause initiation, Harmful if IEN. DO NOY TAKE INTERNALL nature only by trained personnel. SECTION i me by vapors to fresh air, Give oxygor or 15 minutes, ap and water IF SYMPTOMS PERSIST, SEE SECTION 9: a which are under the reporting registerments of Technole components.	 FIRST AID Remove parson overcom 15 minutes with water Ma swallowers, induce vom tr swallowers, induce vom tr Y. B: FIRST AID en or respiration if needed drink two glasses of water K MEDICAL ASSISTANCE SARA TITLE III 	ie by vapors to fresh air. Filijsh ei Ish di oʻskir, with soar, an diwah igi Call physician ni Call physician on astrarges using form R. Setta Title in

2 **V** - 11 - 11

t

Imagine the result

Former Dangman Park MGP Site

Data Usability Summary Report

BROOKLYN, NEW YORK

Volatile Analyses

SDG# L1002703

Analyses Performed By: Alpha Analytical Mansfield, Massachusetts

Report: #11760R Review Level: Tier III Project: B0036704.0000.00005

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # L1002703 for samples collected in association with the Former Dangman Park MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	РСВ	MET	MISC
AA-1	L1002703-01	Air	2/22/2010		Х				
IA-1	L1002703-02	Air	2/22/2010		Х				
IA-7	L1002703-03	Air	2/22/2010		Х				
IA-6	L1002703-04	Air	2/22/2010		Х				
IA-3	L1002703-05	Air	2/22/2010		Х				
IA-5	L1002703-06	Air	2/22/2010		Х				
IA-4	L1002703-07	Air	2/22/2010		Х				
IA-2	L1002703-08	Air	2/22/2010		Х				
DUP022210	L1002703-09	Air	2/22/2010	IA-2	Х				

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Reported		Performance Acceptable		Not	
Items Reviewed	No	Yes	No	Yes	Required	
Sample receipt condition		Х		Х		
Requested analyses and sample results		Х		Х		
Collection Technique (grab, composite, etc.)		Х		Х		
Methods of analysis		Х		Х		
Reporting limits		Х		Х		
Sample collection date		Х		Х		
Laboratory sample received date		Х		Х		
Sample preservation verification (as applicable)		Х		Х		
Sample preparation/extraction/analysis dates		Х		Х		
Fully executed Chain-of-Custody (COC) form completed		х		х		
Narrative summary of QA or sample problems provided		х		х		
Data Package Completeness and Compliance		Х		Х		

QA - Quality Assurance

INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15) and NYSDEC Modifications to R9 TO-15 QA/QC Criteria February 2008.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on

data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

	Method	Matrix	Holding Time	Preservation	
Me	thod TO-15	Air	30 days storage from collection to analysis	Ambient temperature	

The sample locations with canisters that exceeded return pressure criteria are presented in the following table.

Sample Locations	Return Pressure/Vacuum Reading ("of Hg)		
DUP022210	-2.6		

Sample results associated with sample locations analyzed by analytical method TO-15 were qualified, as specified in the table below.

Criteria	Detected Compounds	Non-detect Compounds	
Return pressure/vacuum < 4"Hg to 1"Hg	J	UJ	

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Several sample locations were compliant with the Method TO-15 requirement of analysis within a 24-hour tune clock but not compliant with the NYSDEC requirement of analysis within a 12-hour tune clock. The data was not qualified.

Mass spectrometer performance was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations associated with this SDG	ICV %RSD	Iso-Propyl alcohol	33.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
	KKF <0.05	Detect	J	
Initial and Continuing	RRF <0.01 ¹	Non-detect	R	
Calibration	KKF <0.01	Detect	J	
	RRF >0.05 or RRF >0.01 1	Non-detect	No Action	
	RRF >0.05 01 RRF >0.01	Detect	NO ACTION	
Initial Calibration	0/ BSD > 200/	Non-detect	UJ	
Initial Calibration	%RSD > 30%	Detect	J	
		Non-detect	No Action	
Continuing Colibration	%D >30% (increase in sensitivity)	Detect	J	
Continuing Calibration	0/D > 200/(decreases in consistivity)	Non-detect	UJ	
	%D >30% (decrease in sensitivity)	Detect	J	

1 RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketenes, 1,4-dioxane, etc.)

5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%. The relative percent difference (RPD) between the LCS recoveries must exhibit an RPD within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

7. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

The laboratory duplicates exhibited acceptable results.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2-Butanone	1.64	1.42	14.3 %
	4-Methyl-2-pentanone	0.261	0.221	AC
	Acetone	9.63	7.82	20.7 %
IA-2/DUP022210	Benzene	0.64	0.58	AC
	Chloromethane	0.675	0.562	AC
	Dichlorodifluoromethane	0.624	0.609	AC
	Ethylbenzene	0.214	0.202	AC

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Heptane	0.251	0.249	AC
	iso-Propyl Alcohol	6.33	5.71	10.2 %
	n-Hexane	0.531	0.512	AC
	o-Xylene	0.201	0.2	AC
	p/m-Xylene	0.491	0.446	AC
	tert-Butyl Alcohol	0.227	0.236	AC
	Tetrachloroethene	0.307	0.298	AC
	Toluene	2.52	2.5	AC
	Trichlorofluoromethane	0.3	0.271	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs; TO-15	Rep	Reported		mance ptable	Not	
		Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	ETRY (GC/	′MS)				
Tier II Validation		1		-		
Canister return pressure/vacuum (5"Hg <u>+</u> 1)		Х	Х			
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
C. Trip blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate(LCSD)					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS)					Х	
Matrix Spike Duplicate(MSD)					Х	
MS/MSD Precision (RPD)					Х	
Field/Lab Duplicate (%D)		Х		Х		
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х	Х			
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		Х		Х		

VOCs; TO-15	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/N	/IS)			
D.Transcription/calculation errors present				Х	
E.Reporting limits adjusted to reflect sample dilutions		Х		Х	
%RSD Percent relative difference			•		

%RSDPercent relative difference%RPercent recovery

Percent recovery Relative percent difference Percent difference

RPD %D

SAMPLE COMPLIANCE REPORT

Sample					Compliancy ¹				Noncompliance	
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	PCB/PEST /HERB	MET	MISC	Noncompliance
L1002703	2/22/2010	TO-15	AA-1	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-1	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-7	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-6	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-3	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-5	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-4	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	IA-2	Air	No					VOC – ICV %RSD
L1002703	2/22/2010	TO-15	DUP022210	Air	No					VOC – Canister return pressure, ICV %RSD

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

VALIDATION PERFORMED BY: Jeffrey L. Davin

SIGNATURE:

Jeffryd. oc).

DATE: March 11, 2010

PEER REVIEW BY: Dennis Capria

DATE: March 17, 2010

CORRECTED SAMPLE ANALYSIS DATA SHEETS AND COCs

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

L1002703

03/02/10

Lab Number: Report Date:

Lab ID:	L1002703-01
Client ID:	AA-1
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 14:30
Analyst:	BS

Date Collected:	02/22/10 15:21
Date Received:	02/23/10
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
I,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20	a ta ata ang ang ang ang ang ang ang ang ang an	1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	0.236	0.200	0.695	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982	911 9 1 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	1
Acetone	1.89	1.00	4.48	2.37		1

03021017:11 Lab Number: L1002703 Report Date: 03/02/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1002703-01 AA-1 BROOKLYN, NY				Date Field	Collected: Received: Prep:	02/22/10 02/23/10 Not Spe)
		ppbV		ug/m3 Results	·····		Dilution Factor	
Parameter Volatile Organics in	Air - Mansfield Lab	Results	RDL	Results	RDL	Qualifier		
· - ·				а 				
Benzene Bromodichloromethane		0.581	0.200	1.85	0.638	Alla dama ma da sa a sa 100 sa anda a sa a	1	
		ND	0.200	ND	1.34		1	
Bromoform		ND	0.200	ND	2.06		1	
Bromomethane		ND	0.200	ND	0.776		1	
Carbon disulfide		ND	0.200	ND	0.622		1	
Carbon tetrachloride		ND	0.200	ND	1.26		1	
Chlorobenzene		ND	0.200	ND	0.920		1	
Chloroethane		ND	0.200	ND	0.527		1	
Chloroform		ND	0.200	ND	0.976		1	
Chloromethane		0.572	0.200	1.18	0.413		1	
cis-1,2-Dichloroethene	N (ALL) N	ND	0.200	ND	0.792		1	
cis-1,3-Dichloropropene		ND	0.200	ND	0.907	÷.,	1	
Cyclohexane		ND	0.200	ND	0.688		1	
Dibromochloromethane		ND	0.200	ND	1.70	k	1	
Dichlorodifluoromethane)	0.534	0.200	2.64	0.988		1	
Ethylbenzene	a 17 () ()	ND	0.200	ND	0.868		1	
1,1,2-Trichloro-1,2,2-Tri	fluoroethane	ND	0.200	ND	1.53		1	
1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	0.200	ND	1.40		1	
Heptane		ND	0.200	ND	0.819		1	
Hexachlorobutadiene		ND	0.200	ND	2.13		1	
n-Hexane		0.257	0.200	0.905	0.704		1	
iso-Propyl Alcohol		0.645	0.500	1.58	1.23	J	1	
Methylene chloride		ND	0.500	ND	1.74	W,	1	
4-Methyl-2-pentanone		ND	0.200	ND	0.819		1	
Methyl tert butyl ether		ND	0.200	ND	0.720		1	
p/m-Xylene		0.371	0.200	1.61	0.868		1	
o-Xylene		ND	0.200	ND	0.868		1	
Naphthalene		ND	0.200	ND	1.05		1	

Ĵ,

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

Lab Number: Report Date:

L1002703 03/02/10

Client ID: A	1002703-01 A-1 ROOKLYN, NY				Date	Collected: Received: Prep:	02/22/1 02/23/1 Not Spe	C
		ppbV	r	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	RDL Qualifier		
Volatile Organics in Air	- Mansfield Lab							
Styrene		ND	0.200	ND	0.851		1	
tert-Butyl Alcohol		ND	0.200	ND	0.606		1	
Tetrachloroethene		0.316	0.200	2.14	1.36		1	
Thiophene		ND	0.200	ND	0.688		1	
Toluene		0.977	0.200	3.68	0.753		1	
trans-1,2-Dichloroethene		ND	0.200	ND	0.792		1	
trans-1,3-Dichloropropene		ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07	· · · · · · · · · · · · · · · · · · ·	1	
Trichlorofluoromethane		0.239	0.200	1.34	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	
Indane		ND	0.200	ND	0.967	· · · · · · · · · · · · · · · · · · ·	1	
Indene		ND	0.200	ND	0.950		1	
1-Methylnaphthalene		ND	2.50	ND	14.5	1		
2-Methylnaphthalene		ND	2.50	ND	14.5		1	

03021017:11 Lab Number: L1002703

Report Date:

03/02/10

SAMPLE RESULTS

Lab ID:	L1002703-02
Client ID:	IA-1
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 15:08
Analyst:	BS

•

Date Collected:	02/22/10 15:00
Date Received:	02/23/10
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield Lab							
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1	
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1	
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1	
1,1-Dichloroethane	ND	0.200	ND	0.809		1	
1,1-Dichloroethene	ND	0.200	ND	0.792		1	
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1	
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1	
1,2-Dibromoethane	ND	0.200	ND	1.54		1	
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1	
1,2-Dichloroethane	ND	0.200	ND	0.809		1	
1,2-Dichloropropane	ND	0.200	ND	0.924		1	
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1	
1,3-Butadiene	ND	0.200	ND	0.442		1	
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1	
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1	
1,4-Dioxane	ND	0.200	ND	0.720		1	
2,2,4-Trimethylpentane	0.208	0.200	0.971	0.934		1	
2-Butanone	0.527	0.200	1.55	0.589		1	
o-Chlorotoluene	ND	0.200	ND	1.03		1	
2-Hexanone	ND	0.200	ND	0.819		1	
3-Chloropropene	ND	0.200	ND	0.626		1	
4-Ethyltoluene	ND	0.200	ND	0.982		1	
Acetone	ND	1.00	ND	2.37		1	

L1002703

03/02/10

Lab Number: Report Date:

Lab ID: Client ID: Sample Location:	L1002703-02 IA-1 BROOKLYN, NY	Vdqq		ug/m3	Date Field	Collected: Received: Prep:	02/22/10 15:00 02/23/10 Not Specified Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab	· .		$\begin{array}{c} 1 & \dots & 1 \\ 1 & \dots & 1 \\ 2 & \dots & 1 \\ 2 & \dots & 1 \\ 1 & \dots & 1 \\ 1 & \dots & 1 \end{array}$			
Benzene		0.660	0.200	2.11	0.638		1
Bromodichloromethane		ND	0.200	ND	1.34		1
Bromoform		ND	0.200	ND	2.06		1
Bromomethane		ND	0.200	ND	0.776		1
Carbon disulfide		ND	0.200	ND	0.622		1
Carbon tetrachloride		ND	0.200	ND	1.26		1
Chlorobenzene		ND	0.200	ND	0.920		1
Chloroethane		ND	0.200	ND	0.527		1
Chloroform		ND	0.200	ND	0.976		1
Chloromethane		0.677	0.200	1.40	0.413		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene		ND	0.200	ND	0.907		1
Cyclohexane		ND	0.200	ND	0.688		1
Dibromochloromethane		ND	0.200	ND	1.70		1
Dichlorodifluoromethane	;	5.19	0.200	25.6	0.988	^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
Ethylbenzene		0.262	0.200	1.14	0.868		1
1,1,2-Trichloro-1,2,2-Trif	luoroethane	ND	0.200	ND	1.53		1
1,2-Dichloro-1,1,2,2-tetra	afluoroethane	ND	0.200	ND	1.40		1
Heptane		0.230	0.200	0.942	0.819		1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
n-Hexane		0.499	0.200	1.76	0.704		1
iso-Propyl Alcohol		3.84	0.500	9.42	1.23	J	1
Methylene chloride		ND	0.500	ND	1.74		1
4-Methyl-2-pentanone		ND	0.200	ND	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
p/m-Xylene		0.382	0.200	1.66	0.868		1
o-Xylene		ND	0.200	ND	0.868	*****	1
Naphthalene		ND	0.200	ND	1.05	· · · · · · · · · · · · · · · · · · ·	1

L1002703

03/02/10

Lab Number: Report Date:

Lab ID: Client ID:	L1002703-02 IA-1					Collected: Received:	02/22/1 02/23/1	
Sample Location:	BROOKLYN, NY				Field		Not Spe	
		ppbV	,	ug/m3	3		Dilution	
Parameter		Results	RDL.	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		ND	0.200	ND	0.851		1	
tert-Butyl Alcohol		ND	0.200	ND	0.606		1	
Tetrachloroethene		0.328	0.200	2.22	1.36		1	
Thiophene		ND	0.200	ND	0.688		1	
Toluene		2.20	0.200	8.27	0.753		1	
trans-1,2-Dichloroethene	9	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroproper	le	ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07		1	
Trichlorofluoromethane		1.76	0.200	9.85	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	
Indane		ND	0.200	ND	0.967		1	
Indene		ND	0.200	ND	0.950		1	
1-Methylnaphthalene		ND	2.50	ND	14.5		1	
2-MethyInaphthalene		ND	2.50	ND	14.5		1	

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

Lab Number: Report Date:

L1002703 03/02/10

Lab ID:	L1002703-03
Client ID:	IA-7
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 15:46
Analyst:	BS

Date Collected:	02/22/10 17:05
Date Received:	02/23/10
Field Prep:	Not Specified

	ppbV		ug/m3	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982	, ,	1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924	194 dawn 1966 dawnau fel dawn ar fel a san ar fel a san ar fel a san a' san a' san a' san a' san a' san a' san	1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	0.433	0.200	1.28	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819	anganan ang ang ang ang ang ang ang ang	1
3-Chloropropene	ND	0.200	ND	0.626	· · · · · · · · · · · · · · · · · · ·	1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	9.38	1.00	22.3	2.37	·,	1

Lab Number: Report Date:

L1002703 03/02/10

prov prov prov prov prov provi provi <thprovi< th=""> provi provi</thprovi<>	ab ID: ilient ID: ample Location:	L1002703-03 IA-7 BROOKLYN, NY	Vdqq		ug/m:	Date Field	Collected: Received: Prep:	02/22/10 02/23/10 Not Spec	
Volatile Organics in Air - Mansfield Lab Benzene 0.607 0.200 1.94 0.638 1 Bromodichloromethane ND 0.200 ND 1.34 1 Bromodichloromethane ND 0.200 ND 2.06 1 Bromoform ND 0.200 ND 0.776 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.527 1 Chlorobenzene ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.792 1 Chloroform ND 0.200 ND 0.907 1 Chloroform ND 0.200 ND 0.907 1 Chloroform ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND	arameter						Qualifier	Dilution Factor	
Dromodichloromethane ND 0.200 ND 1.34 1 Bromodichloromethane ND 0.200 ND 2.06 1 Bromoform ND 0.200 ND 2.06 1 Bromoform ND 0.200 ND 0.776 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.622 1 Chiorobenzene ND 0.200 ND 0.920 1 Chioroethane ND 0.200 ND 0.920 1 Chioroethane ND 0.200 ND 0.927 1 Chioroethane 0.646 0.200 ND 0.976 1 Cyclohexane ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 0.688 1 Dibro	olatile Organics in	Air - Mansfield Lab			and a straight to be a		in the second	ener († 1919 - State Press, 19	
Inc ND 0.200 ND 2.06 1 Bromoform ND 0.200 ND 2.06 1 Bromorethane ND 0.200 ND 0.776 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.622 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.976 1 Chloroform ND 0.200 ND 0.976 1 Chloroform ND 0.200 ND 0.9792 1 dis-1.2-Dichloropropene ND 0.200 ND 0.688 1 Dibromochloromethane ND 0.200 ND 1.70 1 Dichorodifluor	enzene		0.607	0.200	1.94	0.638		1	
Inc OLCO ND OLCO ND O.776 1 Bromomethane ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon tetrachloride ND 0.200 ND 0.527 1 Chlorobenzene ND 0.200 ND 0.527 1 Chloroftm ND 0.200 ND 0.527 1 Chloroftm ND 0.200 ND 0.527 1 Chloroftm ND 0.200 ND 0.976 1 Chloroftm ND 0.200 ND 0.976 1 Chloromethane 0.646 0.200 ND 0.907 1 cis-1,3-Dichloroethene ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 1.70 1 Dichorodifluoromethane 0.782 0.200 ND 1.63 1 <	romodichloromethane		ND	0.200	ND	1.34		1	
Carbon disulfide ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon tetrachloride ND 0.200 ND 1.26 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.527 1 Chlorobenzene ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.976 1 Chloromethane 0.646 0.200 ND 0.792 1 cis-1,3-Dichloroethene ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 0.688 1 Dibromochloromethane NZ 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 ND 1.53 1 1,1,2-Trichloro-1,1,2,2-Trifluoroethane ND 0.200 ND 1.40 </td <td>romoform</td> <td></td> <td>ND</td> <td>0.200</td> <td>ND</td> <td>2.06</td> <td></td> <td>1</td> <td></td>	romoform		ND	0.200	ND	2.06		1	
Carbon tetrachloride ND 0.200 ND 1.26 1 Carbon tetrachloride ND 0.200 ND 1.26 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.976 1 Chlorobenzene 0.646 0.200 ND 0.976 1 Chloroform ND 0.200 ND 0.792 1 Chloropropene ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 0.907 1 Dibromochloromethane ND 0.200 ND 0.688 1 Dibromochloromethane ND 0.200 ND 1.70 1 Dichlorodifluoronethane ND 0.200 ND 1.53 1 1,1.2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.40	romomethane		ND	0.200	ND	0.776		1	
Ins ND 0.527 1 Chloroform ND 0.200 ND 0.976 1 Chloromethane 0.646 0.200 ND 0.976 1 Chlorobenzene ND 0.200 ND 0.976 1 Chloromethane 0.646 0.200 ND 0.907 1 cis-1,2-Dichloroptopene ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 1.70 1 Dichorodfluoromethane ND 0.200 ND 1.70 1 Lithylbenzene 0.269 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-Trifluoroethane ND 0.200 ND 1.40 1 <t< td=""><td>arbon disulfide</td><td></td><td>ND</td><td>0.200</td><td>ND</td><td>0.622</td><td></td><td>1</td><td></td></t<>	arbon disulfide		ND	0.200	ND	0.622		1	
Ins O.200 ND O.527 1 Chloroethane ND 0.200 ND 0.527 1 Chloroform ND 0.200 ND 0.976 1 Chloroethane 0.646 0.200 ND 0.976 1 Chloroethane 0.646 0.200 ND 0.792 1 cis-1,2-Dichloroethene ND 0.200 ND 0.907 1 cis-1,3-Dichloropropene ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 0.688 1 Dibromochloromethane 0.782 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 ND 1.53 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 ND 2.13	arbon tetrachloride		ND	0.200	ND	1.26		1	
ND 0.200 ND 0.976 1 Chloroform ND 0.200 ND 0.976 1 Chloromethane 0.646 0.200 1.33 0.413 1 cis-1,2-Dichloroethene ND 0.200 ND 0.792 1 cis-1,3-Dichloropropene ND 0.200 ND 0.907 1 Cyclohexane ND 0.200 ND 0.6688 1 Dibromochloromethane 0.782 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 ND 1.53 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 ND 1.40 1 Heptane ND 0.200 ND 2.13	hlorobenzene		ND	0.200	ND	0.920		1	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	hloroethane		ND	0.200	ND	0.527		1	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	hloroform		ND	0.200	ND	0.976		1	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	hloromethane		0.646	0.200	1.33	0.413		1	
ND 0.200 ND 0.688 1 Cyclohexane ND 0.200 ND 0.688 1 Dibromochloromethane ND 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 3.86 0.988 1 Ethylbenzene 0.269 0.200 1.17 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 ND 2.13 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.720 <td>s-1,2-Dichloroethene</td> <td></td> <td>ND</td> <td>0.200</td> <td>ND</td> <td>0.792</td> <td>-</td> <td>1</td> <td></td>	s-1,2-Dichloroethene		ND	0.200	ND	0.792	-	1	
ND 0.200 ND 1.70 1 Dibromochloromethane 0.782 0.200 ND 1.70 1 Dichlorodifluoromethane 0.782 0.200 3.86 0.988 1 Ethylbenzene 0.269 0.200 1.17 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 ND 2.13 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.200 ND 0.819 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1	s-1,3-Dichloropropene		ND	0.200	ND	0.907	·	1	
Dichlorodifluoromethane 0.782 0.200 3.86 0.988 1 Ethylbenzene 0.269 0.200 1.17 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 ND 1.40 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 ND 2.13 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 4-Methyl-2-pentanone ND 0.200 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1	yclohexane		ND	0.200	ND	0.688		1	
Ethylbenzene 0.269 0.200 1.17 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 ND 1.40 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 ND 2.13 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 4-Methyl-e-pentanone ND 0.200 ND 1.74 1 Methyl tert butyl ether ND 0.200 ND 0.819 1	ibromochloromethane		ND	0.200	ND	1.70		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 0.913 0.819 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.200 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1	ichlorodifluoromethane		0.782	0.200	3.86	0.988		1	
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 0.223 0.200 0.913 0.819 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1	thylbenzene		0.269	0.200	1.17	0.868		1	
Heptane 0.223 0.200 0.913 0.819 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1	,1,2-Trichloro-1,2,2-Trifl	uoroethane	ND	0.200	ND	1.53		1	
Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1	,2-Dichloro-1,1,2,2-tetra	fluoroethane	ND	0.200	ND	1.40		1	
n-Hexane 0.279 0.200 0.983 0.704 1 iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1	leptane	· · · · · · · · ·	0.223	0.200	0.913	0.819		1	
iso-Propyl Alcohol 25.9 0.500 63.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1	lexachlorobutadiene		ND	0.200	ND	2.13		1	
Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1	-Hexane		0.279	0.200	0.983	0.704		1	
Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone ND 0.200 ND 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1	o-Propyl Alcohol	- AA	25.9	0.500	63.6	1.23	Ţ	1	
Methyl tert butyl ether ND 0.200 ND 0.720 1	lethylene chloride		ND	0.500	ND	1.74		1	
	-Methyl-2-pentanone		ND	0.200	ND	0.819		1	
p/m-Xylene 0.637 0.200 2.76 0.868 1	lethyl tert butyl ether		ND	0.200	ND	0.720		1	
	/m-Xylene		0.637	0.200	2.76	0.868		1	
o-Xylene 0.262 0.200 1.14 0.868 1	-Xylene		0.262	0.200	1.14	0.868		1	
Naphthalene ND 0.200 ND 1.05 1	laphthalene		ND	0.200	ND	1.05		1	

 Lab Number:
 L1002703

 Report Date:
 03/02/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1002703-03 IA-7 BROOKLYN, NY					Collected: Received: Prep:	02/22/10 17:05 02/23/10 Not Specified
		ppbV		ug/m3	3		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab						
Styrene		ND	0.200	ND	0.851		1
tert-Butyl Alcohol		ND	0.200	ND	0.606		1
Tetrachloroethene		1.53	0.200	10.4	1.36		1
Thiophene		ND	0.200	ND	0.688		1
Toluene		1.41	0.200	5.31	0.753		1
trans-1,2-Dichloroethene	3	ND	0.200	ND	0.792		1
trans-1,3-Dichloroproper	ıe	ND	0.200	ND	0.907		1
Trichloroethene		ND	0.200	ND	1.07		1
Trichlorofluoromethane		0.354	0.200	1.99	1.12		1
Vinyl bromide		ND	0.200	ND	0.874		1
Vinyl chloride		ND	0.200	ND	0.511		1
Indane		ND	0.200	ND	0.967	· .	1
Indene		ND	0.200	ND	0.950		1
1-Methylnaphthalene		ND	2.50	ND	14.5		1
2-Methylnaphthalene		ND	2.50	ND	14.5		1

,

03021017:11

 Lab Number:
 L1002703

 Report Date:
 03/02/10

SAMPLE RESULTS

Lab ID:	L1002703-04
Client ID:	IA-6
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 16:24
Analyst:	BS

Date Collected:	02/22/10 15:41
Date Received:	02/23/10
Field Prep:	Not Specified

03021017:11

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	0.232	0.200	1.14	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924	- CONSTRUCTION CONTRACT CONTRACTOR CONTRACT CONTRACTOR CONTRACTOR CON CONTRACTOR CONTRACTOR CONT	1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	0.531	0.200	1.56	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	10.3	1.00	24.4	2.37		1

.

L1002703

03/02/10

Lab Number: Report Date:

Lab ID: Client ID: Sample Location:	L1002703-04 IA-6 BROOKLYN, NY	ppbV		ug/m3	Date Field	Collected: Received: Prep:	02/22/10 15:4 02/23/10 Not Specified
Parameter		Results	RDL	Results	RDL	Qualifier	Dilution Factor
	Air - Mansfield Lab						
Benzene		0.637	0.200	2.03	0.638		1
Bromodichloromethane		ND	0.200	ND	1.34		1
Bromoform		ND	0.200	ND	2.06		1
Bromomethane		ND	0.200	ND	0.776		1
Carbon disulfide		ND	0.200	ND	0.622		1
Carbon tetrachloride		ND	0.200	ND	1.26		1
Chlorobenzene		ND	0.200	ND	0.920		1
Chloroethane		ND	0.200	ND	0.527		1
Chloroform		ND	0.200	ND	0.976		1
Chloromethane		0.634	0.200	1.31	0.413		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene		ND	0.200	ND	0.907		1
Cyclohexane		0.210	0.200	0.722	0.688	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1
Dibromochloromethane		ND	0.200	ND	1.70		1
Dichlorodifluoromethane	Э	0.779	0.200	3.85	0.988		1
Ethylbenzene		ND	0.200	ND	0.868		1
1,1,2-Trichloro-1,2,2-Tri	fluoroethane	ND	0.200	ND	1.53		1
1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	0.200	ND	1.40		1
Heptane		0.341	0.200	1.40	0.819		1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
n-Hexane		0.454	0.200	1.60	0.704		1
iso-Propyl Alcohol		15.9	0.500	39.0	1.23	J	1
Methylene chloride		ND	0.500	ND	1.74		1
4-Methyl-2-pentanone		0.812	0.200	3.32	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
p/m-Xylene		0.364	0.200	1.58	0.868		1
o-Xylene		ND	0.200	ND	0.868		1
Naphthalene		ND	0.200	ND	1.05		1

Lab Number: Report Date:

03/02/10

L1002703

Parameter ppbV ug/m3 Qualifier Dilution Factor Volatile Organics in Air - Mansfield Lab ND 0.200 ND 0.851 1 Styrene ND 0.200 ND 0.666 1 Tetrachloroethene 2.65 0.200 ND 0.666 1 Toluene 1.14 0.200 ND 0.668 1 Toluene 1.14 0.200 ND 0.688 1 Toluene 1.14 0.200 ND 0.688 1 Trichloroethene 0.337 0.200 ND 0.907 1 Trichlorofluoromethane 0.337 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.907 1 Trichlorofluoromethane 0.337 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.967 1 </th <th>Lab ID: Client ID:</th> <th>L1002703-04 IA-6</th> <th></th> <th></th> <th></th> <th></th> <th>Collected: Received:</th> <th>02/22/² 02/23/²</th> <th>10 15:41</th>	Lab ID: Client ID:	L1002703-04 IA-6					Collected: Received:	02/22/ ² 02/23/ ²	10 15:41
ParameterResultsRDLug/m3PilutionVolatile Organics in Air - Mansfield LabND0.200ND0.8511StyreneND0.200ND0.6061tert-Butyl AlcoholND0.200ND0.6061Tetrachloroethene2.650.20018.01.361ThiopheneND0.200ND0.6881Toluene1.140.200ND0.7531trans-1,3-DichloroetheneND0.200ND0.7921TrichloroetheneND0.200ND0.9071TrichloroetheneND0.200ND0.9071TrichloroetheneND0.200ND0.8741TrichloroetheneND0.200ND0.8741Trichlorofluoromethane0.3370.200ND0.8741Vinyl chorideND0.200ND0.9671IndaneND0.200ND0.95011-MethylnaphthaleneND0.200ND0.9501									
ParameterResultsRDLResultsRDLQualifierFactorVolatile Organics in Air - Mansfield LabND0.200ND0.8511StyreneND0.200ND0.6061tert-Butyl AlcoholND0.200ND0.6061Tetrachloroethene2.650.20018.01.361ThiopheneND0.200ND0.6881Toluene1.140.200AJ300.7531trans-1,2-DichloroetheneND0.200ND0.9071TrichloroetheneND0.200ND0.9071TrichloroetheneND0.200ND0.9071TrichloroetheneND0.200ND0.8741Vinyl bromideND0.200ND0.8741Vinyl chlorideND0.200ND0.9671IndaneND0.200ND0.9671IndeneND0.200ND0.9671IndeneND0.200ND0.9671IndeneND0.200ND0.9501IndeneND0.200ND0.9501IndeneND0.200ND0.9501IndeneND0.200ND0.9501IndeneND0.200ND0.9501IndeneND0.200ND0.9501IndeneND <th></th> <th></th> <th>ppb\</th> <th>1</th> <th>ug/m</th> <th></th> <th>•</th> <th></th> <th></th>			ppb\	1	ug/m		•		
Styrene ND 0.200 ND 0.851 1 tert-Butyl Alcohol ND 0.200 ND 0.606 1 Tetrachloroethene 2.65 0.200 18.0 1.36 1 Thiophene ND 0.200 ND 0.688 1 Toluene 1.14 0.200 ND 0.753 1 trans-1,2-Dichloroethene ND 0.200 ND 0.792 1 trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 1.07 1 Trichloroptopene ND 0.200 ND 1.07 1 Trichlorofluoromethane 0.337 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indane ND 0.200 ND 0.9550 1 <	Parameter		Results	RDL	Results	RDL	Qualifier		
Instruction NB Output NB Output Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	Volatile Organics in	n Air - Mansfield Lab							
Tetrachloroethene 2.65 0.200 18.0 1.36 1 Thiophene ND 0.200 ND 0.688 1 Toluene 1.14 0.200 ND 0.753 1 trans-1,2-Dichloroethene ND 0.200 ND 0.792 1 trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 1.07 1 Trichlorofluoromethane 0.337 0.200 ND 0.874 1 Vinyl bromide ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 <td< td=""><td>Styrene</td><td></td><td>ND</td><td>0.200</td><td>ND</td><td>0.851</td><td></td><td>1</td><td></td></td<>	Styrene		ND	0.200	ND	0.851		1	
Thiophene ND 0.200 ND 0.688 1 Toluene 1.14 0.200 ND 0.688 1 Toluene 1.14 0.200 ND 0.753 1 trans-1,2-Dichloroethene ND 0.200 ND 0.792 1 trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 1.07 1 Trichloroethene 0.337 0.200 ND 0.874 1 Vinyl bromide ND 0.200 ND 0.511 1 Vinyl chloride ND 0.200 ND 0.967 1 Indane ND 0.200 ND 0.967 1 Indane ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 Indene ND 2.50 ND 14.5 1	tert-Butyl Alcohol		ND	0.200	ND	0.606		1	
Toluene 1.14 0.200 4.30 0.753 1 trans-1,2-Dichloroethene ND 0.200 ND 0.792 1 trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 1.07 1 Trichloroethene ND 0.200 ND 1.07 1 Trichloroethene 0.337 0.200 ND 0.874 1 Vinyl bromide ND 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.967 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 Indene ND 2.50 ND 14.5 1	Tetrachloroethene		2.65	0.200	18.0	1.36		1	
trans-1,2-Dichloroethene ND 0.200 ND 0.792 1 trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 1.07 1 Trichloroethene ND 0.200 ND 1.07 1 Trichlorofluoromethane 0.337 0.200 1.89 1.12 1 Vinyl bromide ND 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 1-Methylnaphthalene ND 2.50 ND 14.5 1	Thiophene		ND	0.200	ND	0.688		1	
trans-1,3-Dichloropropene ND 0.200 ND 0.907 1 Trichloroethene ND 0.200 ND 1.07 1 Trichloroethene 0.337 0.200 1.89 1.12 1 Vinyl bromide ND 0.200 ND 0.874 1 Vinyl bromide ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 Indene ND 2.50 ND 14.5 1	Toluene		1.14	0.200	4.30	0.753		1	
Trichloroethene ND 0.200 ND 1.07 1 Trichlorofluoromethane 0.337 0.200 1.89 1.12 1 Vinyl bromide ND 0.200 ND 0.874 1 Vinyl bromide ND 0.200 ND 0.874 1 Vinyl bromide ND 0.200 ND 0.967 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 1-Methylnaphthalene ND 2.50 ND 14.5 1	trans-1,2-Dichloroethen	e	ND	0.200	ND	0.792		1	
Trichlorofluoromethane 0.337 0.200 1.89 1.12 1 Vinyl bromide ND 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 Indene ND 2.50 ND 14.5 1	trans-1,3-Dichloroprope	ne	ND	0.200	ND	0.907		1	
Vinyl bromide ND 0.200 ND 0.874 1 Vinyl chloride ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 1-Methylnaphthalene ND 2.50 ND 14.5 1	Trichloroethene		ND	0.200	ND	1.07		1	
Vinyl chloride ND 0.200 ND 0.511 1 Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 1-Methylnaphthalene ND 2.50 ND 14.5 1	Trichlorofluoromethane		0.337	0.200	1.89	1.12		1	
Indane ND 0.200 ND 0.967 1 Indene ND 0.200 ND 0.950 1 Indene ND 0.200 ND 0.950 1 1-Methylnaphthalene ND 2.50 ND 14.5 1	Vinyl bromide		ND	0.200	ND	0.874		1	
Index ND 0.200 ND 0.950 1 1-Methylnaphthalene ND 2.50 ND 14.5 1	Vinyl chloride		ND	0.200	ND	0.511		1	
1-Methylnaphthalene ND 2.50 ND 14.5 1	Indane		ND	0.200	ND	0.967		1	
	Indene		ND	0.200	ND	0.950		1	
2-Methylnaphthalene ND 2.50 ND 14.5 1	1-Methylnaphthalene		ND	2.50	ND	14.5	,	1	
	2-Methylnaphthalene		ND	2.50	ND	14.5		1	-

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

Lab Number: Report Date:

L1002703 03/02/10

Lab ID:	L1002703-05
Client ID:	IA-3
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 17:40
Analyst:	BS

Date Collected:	02/22/10 16:21
Date Received:	02/23/10
Field Prep:	Not Specified

	ppbV		ug/m	13		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	0.262	0.200	1.22	0.934		1
2-Butanone	7.45	0.200	21.9	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	12.0	1.00	28.6	2.37		1

 Lab Number:
 L1002703

 Report Date:
 03/02/10

03021017:11

Parameter Resulta RDL Resulta Qualifier Pactor Volatile Organics in Air - Mansfield Lab 1.90 0.638 1 Bromodchloromethane ND 0.200 ND 1.34 1 Bromodchloromethane ND 0.200 ND 2.06 1 Bromodchloromethane ND 0.200 ND 0.632 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.622 1 Chiorobenzene ND 0.200 ND 0.527 1 Chiorobenzene ND 0.200 ND 0.527 1 Chiorobenzene ND 0.200 ND 0.976 1 Chiorobenzene ND 0.200 ND 0.977 1 Chiorobenzene ND 0.200 ND 0.976 1 Chiorobenzene ND 0.200 ND 1.70 1	Lab ID: Client ID: Sample Location:	L1002703-05 IA-3 BROOKLYN, NY	ppbV		ug/m3	Date l Field	Collected: Received: Prep:	02/22/10 16:21 02/23/10 Not Specified Dilution
Benzene 0.594 0.200 1.90 0.638 1 Bromodichloromethane ND 0.200 ND 1.34 1 Bromodichloromethane ND 0.200 ND 2.66 1 Bromomethane ND 0.200 ND 0.776 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon terachloride ND 0.200 ND 0.622 1 Chiorobenzene ND 0.200 ND 0.527 1 Chioroethane ND 0.200 ND 0.976 1 Chioroethane 0.750 0.200 ND 0.972 1 Chioroethane 0.750 0.200 ND 0.972 1 Chioroethane ND 0.200 ND 0.972 1 Cyclohexane 0.223 0.200 ND 0.972 1 Cyclohexane 0.591 0.200 ND 1.70 1 <tr< th=""><th>Parameter</th><th></th><th></th><th></th><th></th><th></th><th>Qualifier</th><th></th></tr<>	Parameter						Qualifier	
Bromodichloromethane ND 0.200 ND 1.34 1 Bromodichloromethane ND 0.200 ND 2.06 1 Bromodichloromethane ND 0.200 ND 0.776 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon disulfide ND 0.200 ND 0.622 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.976 1 Chlorobenzene ND 0.200 ND 0.9792 1 Chlorobenzene ND 0.200 ND 0.9792 1 Cyclohexane 0.223 0.200 ND 0.9792 1 Dichlorofulturomethane 0.591 0.200 ND 0.868 1 <td>Volatile Organics in</td> <td>Air - Mansfield Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organics in	Air - Mansfield Lab						
ND 0.200 ND 2.06 1 Bromoform ND 0.200 ND 2.06 1 Bromoform ND 0.200 ND 0.776 1 Carbon disulfide ND 0.200 ND 0.622 1 Carbon tetrachloride ND 0.200 ND 0.527 1 Chloroethane ND 0.200 ND 0.527 1 Chloroethane ND 0.200 ND 0.577 1 Chloroethane 0.750 0.200 ND 0.577 1 Chloroethane 0.750 0.200 ND 0.577 1 Chloroethane 0.750 0.200 ND 0.597 1 Cyclohexane 0.223 0.200 ND 0.597 1 Dibromochloromethane ND 0.200 ND 1.70 1 Dichlorodifluoromethane 0.591 0.200 ND 1.63 1 1.1.2-Trichloro-	Benzene		0.594	0.200	1.90	0.638		1
Int Int <thint< th=""> <thint< th=""> <thint< th=""></thint<></thint<></thint<>	Bromodichloromethane		ND	0.200	ND	1.34	1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1
NB OLCO ND	Bromoform		ND	0.200	ND	2.06		1
ND 0.200 ND 1.26 1 Carbon tetrachloride ND 0.200 ND 1.26 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.920 1 Chlorobenzene ND 0.200 ND 0.927 1 Chlorobenzene ND 0.200 ND 0.976 1 Chlorobertane 0.750 0.200 1.55 0.413 1 Cis-1,2-Dichloroethene ND 0.200 ND 0.977 1 Cyclohexane 0.223 0.200 ND 1.70 1 Dibronochloromethane ND 0.200 ND 1.70 1 Dichloroffilluromethane 0.591 0.200 ND 1.70 1 Dichloro-1,1,2,2-Trifluoroethane ND 0.200 ND 1.68 1 1,1,2-Tichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.40	Bromomethane		ND	0.200	ND	0.776		1
Inc Inc <thinc< th=""> <thinc< th=""> <thinc< th=""></thinc<></thinc<></thinc<>	Carbon disulfide		ND	0.200	ND	0.622		1
Inc Inc <td>Carbon tetrachloride</td> <td></td> <td>ND</td> <td>0.200</td> <td>ND</td> <td>1.26</td> <td></td> <td>1</td>	Carbon tetrachloride		ND	0.200	ND	1.26		1
Ind Ind <thind< th=""> <thind< th=""> <thind< th=""></thind<></thind<></thind<>	Chlorobenzene		ND	0.200	ND	0.920		1
Ins D.100 Ins D.150 D.155 D.413 1 Chloromethane ND 0.200 ND 0.792 1 1 Cyclohexane 0.223 0.200 ND 0.907 1 1 Cyclohexane 0.223 0.200 ND 1.70 1 1 Dibromochloromethane ND 0.200 ND 1.70 1 1 Dichlorodifluoromethane 0.591 0.200 ND 0.868 1 1 1,2-Dichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.40 1 Heptane 1.25 0.200 ND 1.40 1 Heptane 1.25 0.200 ND 2.13 1 Hexachlorobutadiene ND 0.200 ND	Chloroethane		ND	0.200	ND	0.527		1
Instruct	Chloroform		ND	0.200	ND	0.976		1
cis-1,3-Dichloropropene ND 0.200 ND 0.907 1 Cyclohexane 0.223 0.200 0.767 0.688 1 Dibromochloromethane ND 0.200 ND 1.70 1 Dichlorodifluoromethane 0.591 0.200 2.92 0.988 1 Ethylbenzene ND 0.200 ND 1.53 1 1,1.2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.688 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 1.25 0.200 ND 2.13 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 R.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.200 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200	Chloromethane		0.750	0.200	1.55	0.413		1
ND ND ND ND ND ND Cyclohexane 0.223 0.200 0.767 0.688 1 Dibromochloromethane ND 0.200 ND 1.70 1 Dichlorodifluoromethane 0.591 0.200 2.92 0.988 1 Ethylbenzene ND 0.200 ND 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.40 1 1,2-Dichloro-1,1,2,2-Trifluoroethane ND 0.200 ND 1.40 1 Heptane 1.25 0.200 ND 2.13 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 S.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 ND 0.720 1 Methyl tert butyl ether ND 0.200 ND	cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
ND 0.200 ND 1.70 1 Dibromochloromethane 0.591 0.200 2.92 0.988 1 Dichlorodifluoromethane 0.591 0.200 2.92 0.988 1 Ethylbenzene ND 0.200 ND 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 1.25 0.200 S.11 0.819 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 8.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.200 ND 1.74 1 Methyl-2-pentanone 0.309 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 ND 0.720<	cis-1,3-Dichloropropene	;	ND	0.200	ND	0.907		1
Instruction Instrution Instruction Instruction	Cyclohexane		0.223	0.200	0.767	0.688		1
Ethylbenzene ND 0.200 ND 0.868 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.200 ND 1.53 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 1.25 0.200 S.11 0.819 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 8.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 ND 0.720 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 o-Xylene 0.577 0.200 ND 0.720 1	Dibromochloromethane		ND	0.200	ND	1.70		1
1.12 1.12 <th< td=""><td>Dichlorodifluoromethan</td><td>9</td><td>0.591</td><td>0.200</td><td>2.92</td><td>0.988</td><td></td><td>1</td></th<>	Dichlorodifluoromethan	9	0.591	0.200	2.92	0.988		1
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.200 ND 1.40 1 Heptane 1.25 0.200 5.11 0.819 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 8.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 o-Xylene 0.218 0.200 0.946 0.868 1	Ethylbenzene		ND	0.200	ND	0.868		1
Heptane 1.25 0.200 5.11 0.819 1 Heptane ND 0.200 ND 2.13 1 Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 8.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1	1,1,2-Trichloro-1,2,2-Tri	fluoroethane	ND	0.200	ND	1.53		1
Hexachlorobutadiene ND 0.200 ND 2.13 1 n-Hexane 2.53 0.200 8.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1	1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	0.200	ND	1.40		1
n-Hexane 2.53 0.200 8.91 0.704 1 iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1	Heptane		1.25	0.200	5.11	0.819		1
iso-Propyl Alcohol 9.63 0.500 23.6 1.23 1 Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1	Hexachlorobutadiene		ND	0.200	ND	2.13		1
Methylene chloride ND 0.500 ND 1.74 1 4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1	n-Hexane		2.53	0.200	8.91	0.704		1
4-Methyl-2-pentanone 0.309 0.200 1.26 0.819 1 Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1 o-Xylene 0.218 0.200 0.946 0.868 1	iso-Propyl Alcohol		9.63	0.500	23.6	1.23	-ange	1
Methyl tert butyl ether ND 0.200 ND 0.720 1 p/m-Xylene 0.577 0.200 2.50 0.868 1 o-Xylene 0.218 0.200 0.946 0.868 1	Methylene chloride		ND	0.500	ND	1.74		1
p/m-Xylene 0.577 0.200 2.50 0.868 1 o-Xylene 0.218 0.200 0.946 0.868 1	4-Methyl-2-pentanone		0.309	0.200	1.26	0.819		1
o-Xylene 0.218 0.200 0.946 0.868 1	Methyl tert butyl ether		ND	0.200	ND	0.720		1
	p/m-Xylene		0.577	0.200	2.50	0.868		1
Naphthalene ND 0.200 ND 1.05 1	o-Xylene		0.218	0.200	0.946	0.868		1
	Naphthalene		ND	0.200	ND	1.05		1

Lab Number: L1002703 Report Date:

03021017:11

03/02/10

Lab ID: Client ID:	L1002703-05 IA-3					Collected: Received:	02/22/1 02/23/1	
Sample Location:	BROOKLYN, NY				Field		Not Spe	
		ppbV	,	ug/m:	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		ND	0.200	ND	0.851		1	
tert-Butyl Alcohol		ND	0.200	ND	0.606		1	
Tetrachloroethene		0.200	0.200	1.36	1.36		1	
Thiophene		ND	0.200	ND	0.688		1	
Toluene		9.48	0.200	35.7	0.753		1	
trans-1,2-Dichloroethene	3	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroprope	ne	ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07		1	
Trichlorofluoromethane		0.262	0.200	1.47	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511	A	1	
Indane		ND	0.200	ND	0.967		1	
Indene		ND	0.200	ND	0.950		1	
1-Methylnaphthalene	·····	ND	2.50	ND	14.5		1	
2-Methylnaphthalene	· · · · · · · · · · · · · · · · · · ·	ND	2.50	ND	14.5		1	

 Lab Number:
 L1002703

 Report Date:
 03/02/10

SAMPLE RESULTS

Lab ID:	L1002703-06
Client ID:	IA-5
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 18:18
Analyst:	BS

Date Collected:	02/22/10 16:16
Date Received:	02/23/10
Field Prep:	Not Specified

03021017:11

	ppbV		ug/m	3	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air - Mansfield Lab))				
1,1,1-Trichloroethane	ND	0.200	ND	1.09	1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37	1
1,1,2-Trichloroethane	ND	0.200	ND	1.09	1
1,1-Dichloroethane	ND	0.200	ND	0.809	1
1,1-Dichloroethene	ND	0.200	ND	0.792	1
1,2,3-Trimethylbenzene	0.288	0.200	1.42	0.983	1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48	1
1,2,4-Trimethylbenzene	0.378	0.200	1.86	0.982	1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7	1
1,2-Dibromoethane	ND	0.200	ND	1.54	' 1
1,2-Dichlorobenzene	ND	0.200	ND	1.20	1
1,2-Dichloroethane	ND	0.200	ND	0.809	1
1,2-Dichloropropane	ND	0.200	ND	0.924	1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982	1
1,3-Butadiene	ND	0.200	ND	0.442	1
1,3-Dichlorobenzene	ND	0.200	ND	1.20	1
1,4-Dichlorobenzene	ND	0.200	ND	1.20	1
1,4-Dioxane	ND	0.200	ND	0.720	1
2,2,4-Trimethylpentane	0.232	0.200	1.08	0.934	1
2-Butanone	1.64	0.200	4.84	0.589	1
o-Chlorotoluene	ND	0.200	ND	1.03	1
2-Hexanone	ND	0.200	ND	0.819	1
3-Chloropropene	ND	0.200	ND	0.626	1
4-Ethyltoluene	0.217	0.200	1.06	0.982	
Acetone	17.3	1.00	41.1	2.37	1

•

Lab Number: Report Date:

L1002703 03/02/10

Lab ID: Client ID: Sample Location:	L1002703-06 IA-5 BROOKLYN, NY				Date l Field	Collected: Received: Prep:	02/22/10 16:16 02/23/10 Not Specified
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor
	Air - Mansfield Lab	Results				• •	
Benzene		0.571	0.200	1.82	0.638		1
Bromodichloromethane		ND	0.200	ND	1.34		1
Bromoform		ND	0.200	ND	2.06		1
Bromomethane		ND	0.200	ND	0.776		
Carbon disulfide		ND	0.200	ND	0.622		
Carbon tetrachloride		ND	0.200	ND	1.26		
Chlorobenzene				ND	0.920		1
Chloroethane		ND	0.200				1 1
Chloroform		ND	0.200	ND	0.527		and and the advectory of the second
		ND	0.200	ND	0.976		1
Chloromethane		0.651	0.200	1.34	0.413		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene)	ND	0.200	ND	0.907		1
Cyclohexane		ND	0.200	ND	0.688		1
Dibromochloromethane		ND	0.200	ND	1.70		1
Dichlorodifluoromethan	e	0.610	0.200	3.01	0.988		1
Ethylbenzene		ND	0.200	ND	0.868		1
1,1,2-Trichloro-1,2,2-Tr	ifluoroethane	ND	0.200	ND	1.53		1
1,2-Dichloro-1,1,2,2-tet	rafluoroethane	ND	0.200	ND	1.40		1
Heptane		0.235	0.200	0.962	0.819		1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
n-Hexane		1.00	0.200	3.53	0.704		1
iso-Propyl Alcohol		23.4	0.500	57.4	1.23	J	1
Methylene chloride		ND	0.500	ND	1.74		1
4-Methyl-2-pentanone		4.78	0.200	19.5	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
p/m-Xylene		0.427	0.200	1.85	0.868		1
o-Xylene		ND	0.200	ND	0.868		1
Naphthalene		ND	0.200	ND	1.05		1

Lab Number: Report Date:

L1002703 03/02/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1002703-06 IA-5 BROOKLYN, NY					Collected: Received: Prep:	02/22/10 16:10 02/23/10 Not Specified
		ppb\	/	ug/m	3		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab						
Styrene		ND	0.200	ND	0.851		1
tert-Butyl Alcohol		0.206	0.200	0.624	0.606		1
Tetrachloroethene		2.42	0.200	16.4	1.36		1
Thiophene		ND	0.200	ND	0.688		1
Toluene		1.30	0.200	4.91	0.753		1
trans-1,2-Dichloroethen	е	ND	0.200	ND	0.792		1
trans-1,3-Dichloroprope	ne	ND	0.200	ND	0.907		1
Trichloroethene		0.267	0.200	1.43	1.07		1 .
Trichlorofluoromethane		0.285	0.200	1.60	1.12		1
Vinyl bromide		ND	0.200	ND	0.874		1
Vinyl chloride		ND	0.200	ND	0.511		1
Indane		ND	0.200	ND	0.967		1
Indene		ND	0.200	ND	0.950		1
1-Methylnaphthalene		ND	2.50	ND	14.5		1
2-Methylnaphthalene		ND	2.50	ND	14.5		1

44

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

Lab Number: Report Date:

L1002703 03/02/10

SAMPLE RESULTS

L1002703-07
IA-4
BROOKLYN, NY
Air
48,TO-15
02/27/10 18:57
BS

Date Collected:02/22/10 19:04Date Received:02/23/10Field Prep:Not Specified

	ppbV		ug/m3	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	0.237	0.200	1.16	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	0.380	0.200	0.840	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	0.212	0.200	0.990	0.934		1
2-Butanone	1.35	0.200	3.98	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	11.3	1.00	26.8	2.37		1

Lab Number: Report Date:

L1002703 03/02/10

Lab ID: Client ID: Sample Location:	L1002703-07 IA-4 BROOKLYN, NY				Date Field	Collected: Received: Prep:	02/22/10 19 02/23/10 Not Specifi
Parameter		ppbV Results	RDL	ug/m Results	RDL	Qualifier	Dilution Factor
Volatile Organics in	Air - Mansfield Lab	Ttoound				quamor	
Benzene		0.918	0.200	2.93	0.638		1
Bromodichloromethane		ND	0.200	ND	1.34		1
Bromoform		ND	0.200	ND	2.06		
Bromomethane		ND	0.200	ND	0.776		1
Carbon disulfide		ND	0.200	ND	0.622		1
Carbon tetrachloride		ND	0.200	ND	1.26		1
Chlorobenzene		ND	0.200	ND	0.920		1
Chloroethane		ND	0.200	ND	0.527		1
Chloroform		ND	0.200	ND	0.976		1
Chloromethane		0.679	0.200	1.40	0.413		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene		ND	0.200	ND	0.907		1
Cyclohexane		ND	0.200	ND	0.688		1
Dibromochloromethane		ND	0.200	ND	1.70		1
Dichlorodifluoromethane		0.887	0.200	4.38	0.988		1
Ethylbenzene		ND	0.200	ND	0.868		1
1,1,2-Trichloro-1,2,2-Trif	luoroethane	ND	0.200	ND	1.53		1
1,2-Dichloro-1,1,2,2-tetra	afluoroethane	ND	0.200	ND	1.40		1
Heptane	AREAL AND A THE AREAL AND A THE AREAL AND A THE AREA	0.380	0.200	1.56	0.819	#	1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
n-Hexane		0.701	0.200	2.47	0.704		1
iso-Propyl Alcohol		10.6	0.500	25.9	1.23	3	1
Methylene chloride		0.508	0.500	1.76	1.74		1
4-Methyl-2-pentanone		0.961	0.200	3.93	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
o/m-Xylene		0.547	0.200	2.37	0.868		1
o-Xylene		0.219	0.200	0.950	0.868		1
Naphthalene							

03021017:11 Lab Number: L1002703 Report Date: 03/02/10

Lab ID: Client ID: Sample Location:	L1002703-07 IA-4 BROOKLYN, NY				Date Collected: Date Received: Field Prep:		02/22/10 02/23/10 Not Spe)
		ppbV		ug/m3	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		ND	0.200	ND	0.851		1	
tert-Butyl Alcohol		0.260	0.200	0.788	0.606		1	
Tetrachloroethene		0.897	0.200	6.08	1.36		1	
Thiophene		ND	0.200	ND	0.688		1	
Toluene		2.37	0.200	8.94	0.753		1	
trans-1,2-Dichloroethene)	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroproper	1ê	ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07		1	
Trichlorofluoromethane		0.373	0.200	2.09	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	
Indane		ND	0.200	ND	0.967		1	
Indene		ND	0.200	ND .	0.950		1	
1-Methylnaphthalene		ND	2.50	ND	14.5		1	
2-Methylnaphthalene		ND	2.50	ND	14.5		1	

 Lab Number:
 L1002703

 Report Date:
 03/02/10

SAMPLE RESULTS

Lab ID:	L1002703-08
Client ID:	IA-2
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 19:35
Analyst:	BS

Date Collected:	02/22/10 16:00
Date Received:	02/23/10
Field Prep:	Not Specified

03021017:11

	ppbV	,	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	1.64	0.200	4.84	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626	· · · ·	1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	9.63	1.00	22.9	2.37		1

 Lab Number:
 L1002703

 Report Date:
 03/02/10

03021017:11

Lab ID: Client ID: Sample Location:	L1002703-08 IA-2 BROOKLYN, NY				Date I Field	Collected: Received: Prep:	02/22/10 16:00 02/23/10 Not Specified
Damanastan		ppbV		ug/m3	RDL	Qualifier	Dilution Factor
Parameter Volatile Organics in	Air - Mansfield Lab	Results	RDL	Results	KDL	Quaimer	
Benzene		0.040	0.000	0.04	0.000		4
Bromodichloromethane		0.640	0.200	2.04	0.638		1
		ND	0.200	ND	1.34		1
Bromoform		ND	0.200	ND	2.06		1
Bromomethane		ND	0.200	ND	0.776		1
Carbon disulfide		ND	0.200	ND	0.622		1
Carbon tetrachloride		ND	0.200	ND	1.26		1
Chlorobenzene		ND	0.200	ND	0.920	1	1
Chloroethane		ND	0.200	ND	0.527	a dia mina kaominina dia ka	1
Chloroform		ND	0.200	ND	0.976		1
Chloromethane		0.675	0.200	1.39	0.413		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene)	ND	0.200	ND	0.907	NAMES AND TO AND TO ADDRESS AND ADDRESS	1
Cyclohexane		ND	0.200	ND	0.688		1
Dibromochloromethane		ND	0.200	ND	1.70		1
Dichlorodifluoromethan	e	0.624	0.200	3.08	0.988		1
Ethylbenzene		0.214	0.200	0.928	0.868		1
1,1,2-Trichloro-1,2,2-Tr	ifluoroethane	ND	0.200	ND	1.53		1
1,2-Dichloro-1,1,2,2-tet	rafluoroethane	ND	0.200	ND	1.40		1
Heptane		0.251	0.200	1.03	0.819		1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
n-Hexane		0.531	0.200	1.87	0.704		1
iso-Propyl Alcohol		6.33	0.500	15.6	1.23	J	1
Methylene chloride		ND	0.500	ND	1.74		1
4-Methyl-2-pentanone		0.261	0.200	1.07	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
p/m-Xylene		0.491	0.200	2.13	0.868		1
o-Xylene		0.201	0.200	0.872	0.868		1
Naphthalene		ND	0.200	ND	1.05		1
			0.200		1.00		·

03021017:11

Lab Number: Report Date:

03/02/10

L1002703

Lab ID: Client ID: Sample Location:	L1002703-08 IA-2 BROOKLYN, NY					Collected: Received: Prep:	02/22/10 16:0 02/23/10 Not Specified	
		ppbV	-	ug/m3	}		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		ND	0.200	ND	0.851		1	
tert-Butyl Alcohol		0.227	0.200	0.688	0.606		1	
Tetrachloroethene		0.307	0.200	2.08	1.36		1	
Thiophene		ND	0.200	ND	0.688		1	
Toluene		2.52	0.200	9.51	0.753		1	
trans-1,2-Dichloroethen	9	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroprope	ne	ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07		1	
Trichlorofluoromethane		0.300	0.200	1.68	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	
Indane		ND	0.200	ND	0.967		1	
Indene		ND	0.200	ND	0.950		1	
1-Methylnaphthalene		ND	2.50	ND	14.5		1	
2-Methylnaphthalene		ND	2.50	ND	14.5		1	

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

Lab Number: Report Date:

L1002703 03/02/10

Lab ID:	L1002703-09
Client ID:	DUP022210
Sample Location:	BROOKLYN, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	02/27/10 20:13
Analyst:	BS

Date Collected:	02/22/10 00:00
Date Received:	02/23/10
Field Prep:	Not Specified

	ppbV		ug/m3	i		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09	J	1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	ND	0.200	ND	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethylbenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	1.42	0.200	4.19	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	7.82	1.00	18.6	2.37		1

Lab Number: Report Date:

L1002703 03/02/10

Lab ID: Client ID: Sample Location:	L1002703-09 DUP022210 BROOKLYN, NY	anhV		ug/m3	Date I Field	Collected: Received: Prep:	02/22/10 00:00 02/23/10 Not Specified		
Parameter		ppbV Results	RDL	Results	RDL	Qualifier	Dilution Factor		
Volatile Organics in	Air - Mansfield Lab								
Benzene		0.580	0.200	1.85	0.638	surger.	1		
Bromodichloromethane		ND	0.200	ND	1.34	<u> </u>	1		
Bromoform		ND	0.200	ND	2.06		1		
Bromomethane		ND	0.200	ND	0.776		1		
Carbon disulfide		ND	0.200	ND	0.622		1		
Carbon tetrachloride		ND	0.200	ND	1.26		1		
Chlorobenzene		ND	0.200	ND	0.920		1		
Chloroethane		ND	0.200	ND	0.527		1		
Chloroform		ND	0.200	ND	0.976		1		
Chloromethane		0.562	0.200	1.16	0.970				
cis-1,2-Dichloroethene				ND	0.413		1		
cis-1,3-Dichloropropene		ND	0.200				-		
		ND	0.200	ND	0.907		1		
Cyclohexane		ND	0.200	ND	0.688		1		
Dibromochloromethane		ND	0.200	ND	1.70		1		
Dichlorodifluoromethane	<u>}</u>	0.609	0.200	3.01	0.988		1		
Ethylbenzene		0.202	0.200	0.876	0.868		1		
1,1,2-Trichloro-1,2,2-Trit		ND	0.200	ND	1.53		1		
1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	0.200	ND	1.40		1		
Heptane		0.249	0.200	1.02	0.819		1		
Hexachlorobutadiene		ND	0.200	ND	2.13		1		
n-Hexane		0.512	0.200	1.80	0.704		1		
iso-Propyl Alcohol	99 99 99 99 99 99 99 99 99 99 99 99 99	5.71	0.500	14.0	1.23		1		
Methylene chloride		ND	0.500	ND	1.74		1		
4-Methyl-2-pentanone		0.221	0.200	0.904	0.819		1		
Methyl tert butyl ether		ND	0.200	ND	0.720		1		
p/m-Xylene		0.446	0.200	1.94	0.868		1		
o-Xylene		0.200	0.200	0.868	0.868		1		
Naphthalene		ND	0.200	ND	1.05	V	1		

Report Date:

Lab Number:

L1002703 03/02/10

Lab ID:L1002703-09Client ID:DUP022210Sample Location:BROOKLYN, NY						Collected: Received: Prep:	02/22/10 00:00 02/23/10 Not Specified	
		ppbV	/	ug/m	3		Dilution	
Parameter		Results RDL		Results RDL		Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		ND	0.200	ND	0.851	J	1	
tert-Butyl Alcohol		0.236	0.200	0.715	0.606		1	
Tetrachloroethene		0.298	0.200	2.02	1.36		1	
Thiophene		ND	0.200	ND	0.688	1		
Toluene		2.50	0.200	9.41	0.753		1	
trans-1,2-Dichloroethene	trans-1,2-Dichloroethene		0.200	ND	0.792		1	
trans-1,3-Dichloroprope	ne	ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07		1	
Trichlorofluoromethane		0.271	0.200	1.52	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511	1		
Indane	•		0.200	ND	0.967		1	
Indene		ND	0.200	ND	0.950		1	
1-Methylnaphthalene		ND	2.50	ND	14.5		1	
2-Methylnaphthalene		ND	2.50	ND	14.5	\checkmark	1	

		NALYSIS	PAGE	OF	Date Re	c'd in Lab	: 2	23/10	2 ×	LPHA	Job #:	LIC	02703
20 Forbes Blvd, Mans	CHAIN OF CUSTODY	Project Informati			Report	Informa	tion - Dat	a Deliveral	oles i	Billing I	nformatic	n	
EL: 508-822-9300 F		Project Name: For-	ner Dangman	Partite	G FAX					Same as	s Client info	PO #:	
lient Information		Project Location: B	rocklyn, NY		Cr DI ADE	x iteria Cheo	cker:						
lient: Arcodis		Project #: Boo 34	704.0000.00	005		Default based her Forma	• •	Criteria Indicate	1)				
Idress: 2 Hunting	tor Quadrangle	Project Manager:		No. 199	1		rd pdf repoi	t)		Regulat			Report Limits
orte 1510, Meloi	He NY 11747	ALPHA Quote #:				ional Deliv			S	tate/Fed	Progi	ram	Criteria
none: 631-249	1-7600	Turn-Around Tin	ne		Report t	O: (if different t	han Project Manag	er)	-		•		
×: 631-24	19-7610		RUSH (only confirmed if	am.androved()	·								
	Carcado - vs. com								ļ		ALYSIS		
These samples have b	peen previously analyzed by Alpha		2/10 Time:		<u> </u>			•			/ / /		
ther Project Spe	cific Requirements/Com	ments:							51	The /	///	'. /	
									10	Slin Parind Lang	70 SES	/	
		Columns E	Below M	ust Be	Fille	d O	ut				24 5ES		
ALPHA Lab ID Lab Use Only)	Sample ID	Date Start Time	Ilection Initi End Time Vacu		Sample S Matrix*	Sampler's Initials	Can II Size Ca		70-14A	APH SIM PA	TUTION IS	mple Con	nments (i.e. PID)
2703.1	AA-1	2/22/10 9:59	1521 -29	.5 -7	AA (38	6L 15	30 0369	X				
2	IA-1	2/22/10 9:38	1500 -28	5-7-	AA	a	GL 10	7 0176	X				
3	IA-7	2/22/10 9/29	1705 7-	30 -7	AA	OP	GL 15	45 0282	X				
e e e e e e e e e e e e e e e e e e e	IA-6	2/22/10 8:47		9-7	AA			9 0175	X				
5	IA-3	2/22/10 9:03			AA			36 0324	X				
6	IA-5	2/22/10 \$156			AA			420276	X	·			
7	<u> </u>	2/22/10 11/11/92			AA			11 0273	1				
8		2/22/10 9413M	from the state of		AA	-W.	6L 16		V.				
M	Dup022210	2/22/10 -	- 7.		· •			80 0023	ł		Be	fore	reading -4,0
	000012210	1/12/10										1 1004	
*SAMPLE N	MATRIX CODES	AA = Ambient Air (Indoor V = Soil Vapor/Landfill (Other = Please Specify			n sin in si Nganati	0.0) ntainer Typ	e	cs		con	npletely. Sa	arly, legibly and mples can not be urnaround time
Rel-L-a	-2/23/16	Relinquished By:	·	Date/Time	Dat	Receiv	ed By:		Date	Time:	clos	ck will not sta ties are reso	art until any ambi- lved. All samples
Rel- 2 2 el: P. Gellent 21:	24/10 10:55 55	t Chefont	- 2	22/10 8:05	Kpen	-ren	Sel	200	1-23-10 501	155	Ten	ms and Con	
m No: 101-02 (19-Jun-09)		puran	the E	155	"ini	Tal			13Alar	100	See	e reverse sid	le.

Imagine the result

Former Dangman Park MGP Site

Data Usability Summary Report

BROOKLYN, NEW YORK

Volatile Analyses

SDG# L1002956

Analyses Performed By: Alpha Analytical Mansfield, Massachusetts

Report: #11761R Review Level: Tier III Project: B0036704.0000.00005

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # L1002956 for samples collected in association with the Former Dangman Park MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample				Analysis	5	
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	SVOC	РСВ	MET	MISC
SSSV-4	L1002956-01	Air	2/24/2010		Х				
SSSV-3	L1002956-02	Air	2/24/2010		Х				
SSSV-1	L1002956-03	Air	2/25/2010		Х				
SSSV-2	L1002956-04	Air	2/25/2010		Х				
DUP022510	L1002956-05	Air	2/25/2010	SSSV-1	Х				

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Reported		Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Collection Technique (grab, composite, etc.)		Х		Х	
Methods of analysis		Х		Х	
Reporting limits		Х		Х	
Sample collection date		Х		Х	
Laboratory sample received date		Х		Х	
Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
Fully executed Chain-of-Custody (COC) form completed		Х		х	
Narrative summary of QA or sample problems provided		Х		х	
Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15) and NYSDEC Modifications to R9 TO-15 QA/QC Criteria February 2008.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on

data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Method TO-15	Air	30 days storage from collection to analysis	Ambient temperature

The sample locations with canisters that exceeded return pressure criteria are presented in the following table.

Sample Locations	Return Pressure/Vacuum Reading ("of Hg)
SSSV-4	0.2

Sample results associated with sample locations analyzed by analytical method TO-15 were qualified, as specified in the table below.

Criteria	Qualification			
	Detected Nondete Analytes Analyte			
Return pressure/vacuum < 4"Hg to 1"Hg	J	UJ		
Return pressure/vacuum < 1"Hg	J	R		

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Several sample locations were compliant with the Method TO-15 requirement of analysis within a 24-hour tune clock but not compliant with the NYSDEC requirement of analysis within a 12-hour tune clock. The data was not qualified.

Mass spectrometer performance was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
		1,2,4,5-Trimethylbenzene	33.8%
	ICV %RSD	1,2,4-Trichlorobenzene	33.0%
All sample locations		2-Methylnaphthalene	39.8%
associated with this SDG	CCV %D	Iso-Propyl alcohol	-30.9%
		1-Methylnaphthalene	37.8%
		2-Methylnaphthalene	46.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	RRF <0.05	Detect	J
Initial and Continuing Calibration	RRF <0.01 ¹	Non-detect	R
Calibration	RRF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action

Initial/Continuing	Criteria	Sample Result	Qualification
		Detect	
Initial Calibration	%RSD > 30%	Non-detect	UJ
	%R3D > 30%	Detect	J
	$0/D \sim 200/$ (increases in constitution)	Non-detect	No Action
Continuing Colibration	%D >30% (increase in sensitivity)	Detect	J
Continuing Calibration	$0/D \sim 200/$ (decreases in consitivity)	Non-detect	UJ
	%D >30% (decrease in sensitivity)	Detect	J

1 RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketenes, 1,4-dioxane, etc.)

5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%. The relative percent difference (RPD) between the LCS recoveries must exhibit an RPD within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

7. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

The laboratory duplicates exhibited acceptable results.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3-Trimethylbenzene	0.551	1 U	AC
	1,2,4-Trimethylbenzene	1.14	1 U	AC
	1,3,5-Trimethylbenzene	0.285	1 U	NC
	1,3-Butadiene	0.675	1 U	AC
	1,4-Dichlorobenzene	0.211	1 U	NC
	2,2,4-Trimethylpentane	0.486	1 U	AC
	2-Butanone	10.3	8.38	20.5 %
	2-Hexanone	0.814	1 U	AC
	4-Ethyltoluene	0.307	1 U	NC
	4-Methyl-2-pentanone	0.495	1 U	AC
	Acetone	46.9	39.5	17.1 %
	Benzene	35.8	32.6	9.3 %
	Carbon disulfide	0.947	1 U	AC
SSSV-1/ DUP022510	Chloromethane	0.782	1 U	AC
00022310	Cyclohexane	0.749	1 U	AC
	Dichlorodifluoromethane	0.478	1 U	AC
	Ethylbenzene	1.16	1 U	AC
	Heptane	2.68	2.28	AC
	Indane	1.1	1 U	AC
	Indene	2.46	1.26	NC
	iso-Propyl Alcohol	4.67	4.3	AC
	Naphthalene	3.49	2.04	NC
	n-Hexane	5.54	5.42	2.1 %
	o-Xylene	1.69	1.19	AC
	p/m-Xylene	3.01	2.1	NC
	Styrene	0.994	1 U	AC
	tert-Butyl Alcohol	0.678	1 U	AC
	Tetrachloroethene	5.56	5.06	9.4 %

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Toluene	16.1	12.5	25.1 %
	Trichlorofluoromethane	0.235	1 U	AC

AC Acceptable

NC Not compliant

The compounds 1,3,5-Trimethylbenzene, 1,4-Dichlorobenzene, 4-Ethyltoluene, Indene, Naphthalene, and p/m-Xylene associated with sample locations SSSV-1 and DUP022510 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs; TO-15	Rep	orted		mance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	′MS)				
Tier II Validation	I	1	1	-		
Canister return pressure/vacuum (5"Hg <u>+</u> 1)		Х	Х			
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
C. Trip blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate(LCSD)					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS)					Х	
Matrix Spike Duplicate(MSD)					Х	
MS/MSD Precision (RPD)					Х	
Field/Lab Duplicate (%D)		Х	X			
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х	X			
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	X			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A.Reconstructed ion chromatograms		Х		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		Х		Х		

VOCs; TO-15		Reported		mance stable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/N	/IS)			
D.Transcription/calculation errors present				Х	
E.Reporting limits adjusted to reflect sample dilutions		х		Х	
%RSD Percent relative difference			•		

%RSDPercent relative difference%RPercent recovery

Percent recovery Relative percent difference Percent difference

RPD %D

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹				Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	PCB/PEST /HERB	MET	MISC	Noncompliance
L1002956	2/24/2010	TO-15	SSSV-4	Air	No					VOC – Return canister pressure, ICV %RSD, CCV %D
L1002956	2/24/2010	TO-15	SSSV-3	Air	No					VOC –ICV %RSD, CCV %D
L1002956	2/25/2010	TO-15	SSSV-1	Air	No					VOC –ICV %RSD, CCV %D, Field Dup RPD
L1002956	2/25/2010	TO-15	SSSV-2	Air	No					VOC –ICV %RSD, CCV %D
L1002956	2/25/2010	TO-15	DUP022510	Air	No					VOC –ICV %RSD, CCV %D, Field Dup RPD

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

VALIDATION PERFORMED BY: Jeffrey L. Davin

SIGNATURE:

Jeffry d. a

DATE: March 12, 2010

PEER REVIEW BY: Dennis Capria

DATE: March 17, 2010

CORRECTED SAMPLE ANALYSIS DATA SHEETS AND COCs

03051016:26

L1002956

03/05/10

Lab Number: Report Date:

Lab ID:	L1002956-01 D
Client ID:	SSSV-4
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	03/05/10 01:56
Analyst:	RY

Date Collected:	02/24/10 14:54
Date Received:	02/27/10
Field Prep:	Not Specified

	ppbV	,	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab					지 않는 것 같아.	
1,1,1-Trichloroethane	ND	1.00	ND	5.45	R	5
1,1,2,2-Tetrachloroethane	ND	1.00	ND	6.86		5
1,1,2-Trichloroethane	ND	1.00	ND	5.45		5
1,1-Dichloroethane	ND	1.00	ND	4.04		5
1,1-Dichloroethene	ND	1.00	ND	3.96		5
1,2,3-Trimethylbenzene	ND	1.00	ND	4.92		5
1,2,4-Trichlorobenzene	ND	1.00	ND	7.42	V	5
1,2,4-Trimethylbenzene	1.08	1.00	5.28	4.91	. J	5
1,2,4,5-Tetramethylbenzene	ND	12.5	ND	68.6	2	5
1,2-Dibromoethane	ND	1.00	ND	7.68		5
I,2-Dichlorobenzene	ND	1.00	ND	6.01		5
I,2-Dichloroethane	ND	1.00	ND	4.04	and a second sec	5
1,2-Dichloropropane	ND	1.00	ND	4.62		5
,3,5-Trimethylbenzene	ND	1.00	ND	4.91		5
I,3-Butadiene	2.10	1.00	4.64	2.21	J	5
,3-Dichlorobenzene	ND	1.00	ND	6.01	R	5
I,4-Dichlorobenzene	ND	1.00	ND	6.01	· · · · · · · · · · · · · · · · · · ·	5
I,4-Dioxane	ND	1.00	ND	3.60		5
2,2,4-Trimethylpentane	ND	1.00	ND	4.67	V	5
2-Butanone	6.36	1.00	18.7	2.95	T	5
p-Chlorotoluene	ND	1.00	ND	5.17	R	5
2-Hexanone	ND	1.00	ND	4.10	• •	5
B-Chloropropene	ND	1.00	ND	3.13	140	5
l-Ethyltoiuene	ND	1.00	ND	4.91		5
Acetone	22.6	5.00	53.6	11.9		5

03051016:26 Lab Number: L1002956

03/05/10

Report Date:

Lab ID:L1002956-01DClient ID:SSSV-4Sample Location:BROOKLYN, NY	ppbV	,	ug/m3	Date	Collected: Received: Prep:	02/24/10 14:54 02/27/10 Not Specified Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab	-18333	landa ya Bayara		11.33) (12.74)		
Benzene	1.25	1.00	3.99	3.19	J	5
Bromodichloromethane	ND	1.00	ND	6.70	R	5
Bromoform	ND	1.00	ND	10.3	l	5
Bromomethane	ND	1.00	ND	3.88		5
Carbon disulfide	ND	1.00	ND	3.11		5
Carbon tetrachloride	ND	1.00	ND	6.29		5
Chlorobenzene	ND	1.00	ND	4.60		5
Chloroethane	ND	1.00	ND	2.64		5
Chloroform	ND	1.00	ND	4.88		5
Chloromethane	ND	1.00	ND	2.06		5
cis-1,2-Dichloroethene	ND	1.00	ND	3.96		5
cis-1,3-Dichloropropene	ND	1.00	ND	4.53	V	5
Cyclohexane	2.43	1.00	8.36	3.44		5
Dibromochloromethane	ND	1.00	ND	8.51	R	5
Dichlorodifluoromethane	ND	1.00	ND	4.94		5
Ethylbenzene	ND	1.00	ND	4.34		5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.00	ND	7.66		5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.00	ND	6.98	V	5
Heptane	2.76	1.00	11.3	4.10	J	5
Hexachlorobutadiene	ND	1.00	ND	10.6	R	5
n-Hexane	4.06	1.00	14.3	3.52	J	5
iso-Propyl Alcohol	2.78	2.50	6.83	6.14	Ĵ	5
Methylene chloride	ND	2.50	ND	8.68	R	5
4-Methyl-2-pentanone	1.62	1.00	6.61	4.09	J	5
Methyl tert butyl ether	ND	1.00	ND	3.60	R	5
p/m-Xylene	2.02	1.00	8.74	4.34	J	5
o-Xylene	ND	1.00	ND	4.34	R	5
Naphthalene	ND	1.00	ND	5.24	R	5

03051016:26

L1002956

03/05/10

Report Date:

Lab Number:

Lab ID: L1002956-01 D Client ID: SSSV-4					Collected: Received:	02/24/10 02/27/10	
Sample Location: BROOKLYN, NY				Field		Not Spe	
	ppb\	/	ug/m3	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield Lab							
Styrene	ND	1.00	ND	4.26	R	5	
tert-Butyl Alcohol	ND	1.00	ND	3.03	R	5	
Tetrachloroethene	45.1	1.00	306	6.78	J	5	
Thiophene	ND	1.00	ND	3.44	R	5	
Toluene	2.28	1.00	8.58	3.76	J	5	
trans-1,2-Dichloroethene	ND	1.00	ND	3.96	R	5	
trans-1,3-Dichloropropene	ND	1.00	ND	4.53	C. C	5	
Trichloroethene	ND	1.00	ND	5.37		5	
Trichlorofluoromethane	ND	1.00	ND	5.61		5	
Vinyl bromide	ND	1.00	ND	4.37		5	
Vinyl chloride	ND	1.00	ND	2.55		5	
Indane	ND	1.00	ND	4.83		5	
Indene	ND	1.00	ND	4.75		5	
1-Methylnaphthalene	ND	12.5	ND	72.7		5	
2-Methylnaphthalene	ND	12.5	ND	72.7	V	5	

03051016:26

L1002956

Lab Number: Report Date:

03/05/10

Lab ID:	L1002956-02 D
Client ID:	SSSV-3
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	03/05/10 03:05
Analyst:	RY

Date Collected:	02/24/10 13:25
Date Received:	02/27/10
Field Prep:	Not Specified

	ppbV	ppbV		3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab					
1,1,1-Trichloroethane	ND	1.00	ND	5.45		5
1,1,2,2-Tetrachloroethane	ND	1.00	ND	6.86		5
1,1,2-Trichloroethane	ND	1.00	ND	5.45		5
1,1-Dichloroethane	ND	1.00	ND	4.04		5
1,1-Dichloroethene	ND	1.00	ND	3.96		5
1,2,3-Trimethylbenzene	ND	1.00	ND	4.92		5
1,2,4-Trichlorobenzene	ND	1.00	ND	7.42	J	5
1,2,4-Trimethylbenzene	ND	1.00	ND	4.91		5
1,2,4,5-Tetramethylbenzene	ND	12.5	ND	68.6	- Joseph Lander - Carlor - Car	5
1,2-Dibromoethane	ND	1.00	ND	7.68	NY TAKANA MANANA MANA AMIN'NA AMIN'NA AMIN'NA AMIN'NA AMIN'NA AMIN'NA AM IN'NA AMIN'NA	5
1,2-Dichlorobenzene	ND	1.00	ND	6.01		5
1,2-Dichloroethane	ND	1.00	ND	4.04		5
1,2-Dichloropropane	ND	1.00	ND	4.62		5
1,3,5-Trimethylbenzene	ND	1.00	ND	4.91		5
1,3-Butadiene	6.35	1.00	14.0	2.21	· · · · · ·	5
1,3-Dichlorobenzene	ND	1.00	ND	6.01		5
1,4-Dichlorobenzene	ND	1.00	ND	6.01		5
1,4-Dioxane	ND	1.00	ND	3.60		5
2,2,4-Trimethylpentane	ND	1.00	ND	4.67		5
2-Butanone	12.8	1.00	37.7	2.95		5
o-Chlorotoluene	ND	1.00	ND	5.17		5
2-Hexanone	2.06	1.00	8.42	4.10		5
3-Chloropropene	ND	1.00	ND	3.13		5
4-Ethyltoluene	ND	1.00	ND	4.91		5
Acetone	63.9	5.00	152	11.9		5

03051016:26 Lab Number: L1002956

Report Date:

03/05/10

Lab ID: Client ID: Sample Location:	L1002956-02 D SSSV-3 BROOKLYN, NY				Date Field	Collected: Received: Prep:	02/24/10 13:25 02/27/10 Not Specified
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor
Volatile Organics in	Air - Mansfield Lab	Nesuits				· · · · · · · · · · · · · · · · · · ·	
Benzene		28.8	1.00	92.0	3.19		5
Bromodichloromethane	· · · · · · · · · · · · · · · · · · ·	ND	1.00	ND	6.70		5
Bromoform		ND	1.00	ND	10.3		5
Bromomethane		ND	1.00	ND	3.88		5
Carbon disulfide		2.08	1.00	6.47	3.11		5
Carbon tetrachloride		ND	1.00	ND	6.29		5
Chlorobenzene	<u></u>	ND	1.00	ND	4.60		5
Chloroethane		ND	1.00	ND	2.64		5
Chloroform		ND	1.00	ND	4.88		5
Chloromethane		2.10	1.00	4.32	2.06		5
cis-1,2-Dichloroethene	· · · ·	ND	1.00	ND	3.96		5
cis-1,3-Dichloropropene		ND	1.00	ND	4.53		5
Cyclohexane		ND	1.00	ND	3.44		5
Dibromochloromethane	- <u> </u>	ND	1.00	ND	8.51		5
Dichlorodifluoromethane)	1.61	1.00	7.96	4.94		5
Ethylbenzene		ND	1.00	ND	4.34	·	5
1,1,2-Trichloro-1,2,2-Tri	fluoroethane	ND	1.00	ND	7.66		5
1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	1.00	ND	6.98		5
Heptane		2.30	1.00	9.42	4.10		5
Hexachlorobutadiene		ND	1.00	ND	10.6		5
n-Hexane		3.77	1.00	13.3	3.52		5
iso-Propyl Alcohol		9.47	2.50	23.2	6.14	J	5
Methylene chloride		ND	2.50	ND	8.68		5
4-Methyl-2-pentanone		1.42	1.00	5.81	4.09		5
Methyl tert butyl ether		ND	1.00	ND	3.60		5
p/m-Xylene		1.10	1.00	4.75	4.34		5
o-Xylene		ND	1.00	ND	4.34		5
Naphthalene		ND	1.00	ND	5.24		5

03051016:26 Lab Number: L1002956 Report Date: 03/05/10

SAMPLE RESULTS

Date Received:G2/2/110Sample Location:BROKLYN, NYField Prep:Not SpecificParameterug/m3Dilution FactorVolatile Organics in Air - Mansfield LabDilutionStyreneND1.00ND4.265StyreneND1.00ND4.265StyreneND1.00ND4.265StyreneND1.00ND4.265StyreneND1.00ND4.265StyreneND1.00ND4.265StyreneND1.00ND6.785TrichloroetheneStyreneND1.00NDThiopheneND1.00ND3.261.00ND4.535TrichloroetheneND1.00ND5.615<	Lab ID: Client ID:	L1002956-02 D SSSV-3	I				Collected: Received:	02/24/10 02/27/10	
ParameterResultsRDLug/m3DulutionVolatile Organics in Air - Mansfield LabStyreneND1.00ND4.265tert-Butyl Alcohol1.841.005.563.035Tetrachloroethene5.901.0039.96.785ThiopheneND1.00ND3.445Toluene3.261.0012.33.765trans-1,2-DichloroetheneND1.00ND4.535TrichloroetheneND1.00ND5.375TrichloroetheneND1.00ND5.375TrichloroetheneND1.00ND5.615TrichloroetheneND1.00ND5.615TrichloroetheneND1.00ND4.375Vinyl bromideND1.00ND4.375Vinyl chlorideND1.00ND2.555									
Parameter Results RDL Results RDL Results Volatile Organics in Air - Mansfield Lab Styrene ND 1.00 ND 4.26 5 tert-Butyl Alcohol 1.84 1.00 5.56 3.03 5 Tetrachloroethene 5.90 1.00 39.9 6.78 5 Thiophene ND 1.00 ND 3.44 5 Toluene 3.26 1.00 12.3 3.76 5 trans-1,2-Dichloroethene ND 1.00 ND 4.53 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.61 5 Trichloroethene ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5			ppb	v	ug/m3	3	·		
Styrene ND 1.00 ND 4.26 5 tert-Butyl Alcohol 1.84 1.00 5.56 3.03 5 Tetrachloroethene 5.90 1.00 39.9 6.78 5 Thiophene ND 1.00 ND 3.44 5 Toluene 3.26 1.00 ND 3.96 5 trans-1,2-Dichloroethene ND 1.00 ND 3.96 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.61 5 Trichloroethene ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5	Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
tert-Butyl Alcohol 1.8 1.00 1.15 1.15 0 tert-Butyl Alcohol 1.84 1.00 5.56 3.03 5 Tetrachloroethene 5.90 1.00 39.9 6.78 5 Thiophene ND 1.00 ND 3.44 5 Toluene 3.26 1.00 12.3 3.76 5 trans-1,2-Dichloroethene ND 1.00 ND 3.96 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.61 5 Trichloroethene ND 1.00 ND 5.61 5 Trichlorofluoromethane ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5	Volatile Organics in	Air - Mansfield Lab	n an tairtean Nach graf Machaire						
Tetrachloroethene 5.90 1.00 39.9 6.78 5 Thiophene ND 1.00 ND 3.44 5 Toluene 3.26 1.00 12.3 3.76 5 trans-1,2-Dichloroethene ND 1.00 ND 3.96 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.37 5 Trichloroethene ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 5.61 5	Styrene		ND	1.00	ND	4.26		5	
Thiophene ND 1.00 ND 3.44 5 Toluene 3.26 1.00 ND 3.76 5 trans-1,2-Dichloroethene ND 1.00 ND 3.96 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.37 5 Trichloroethene ND 1.00 ND 5.37 5 Trichloroethene ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5 Vinyl chloride ND 1.00 ND 2.55 5	tert-Butyl Alcohol		1.84	1.00	5.56	3.03		5	
Toluene 3.26 1.00 12.3 3.76 5 trans-1,2-Dichloroethene ND 1.00 ND 3.96 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.37 5 Trichloroftuoromethane ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5 Vinyl chloride ND 1.00 ND 2.55 5	Tetrachloroethene		5.90	1.00	39.9	6.78		5	
trans-1,2-Dichloropropene ND 1.00 ND 3.96 5 trans-1,3-Dichloropropene ND 1.00 ND 4.53 5 Trichloroethene ND 1.00 ND 5.37 5 Trichloroethene ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5 Vinyl chloride ND 1.00 ND 2.55 5	Thiophene		ND	1.00	ND	3.44		5	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	Toluene		3.26	1.00	12.3	3.76		5	
Trichloroethene ND 1.00 ND 5.37 5 Trichlorofluoromethane ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5 Vinyl chloride ND 1.00 ND 2.55 5	trans-1,2-Dichloroethene	2	ND	1.00	ND	3.96		5	
Trichlorofluoromethane ND 1.00 ND 5.61 5 Vinyl bromide ND 1.00 ND 4.37 5 Vinyl chloride ND 1.00 ND 2.55 5	trans-1,3-Dichloroproper	e	ND	1.00	ND	4.53		5	
Vinyl bromide ND 1.00 ND 4.37 5 Vinyl chloride ND 1.00 ND 2.55 5	Trichloroethene		ND	1.00	ND	5.37		5	
Vinyl chloride ND 1.00 ND 2.55 5	Trichlorofluoromethane		ND	1.00	ND	5.61		5	
	Vinyl bromide		ND	1.00	ND	4.37		5	
Indane ND 1.00 ND 4.83 5	Vinyl chloride		ND	1.00	ND	2.55		5	
	Indane		ND	1.00	ND	4.83	,	5	
Indene ND 1.00 ND 4.75 5	Indene		ND	1.00	ND	4.75		5	
1-Methylnaphthalene ND 12.5 ND 72.7 5	1-Methylnaphthalene		ND	12.5	ND	72.7		5	
2-Methylnaphthalene ND 12.5 ND 72.7 J 5	2-Methylnaphthalene		ND	12.5	ND	72.7	J	5	

¢

03051016:26 Lab Number: L1002956 **Report Date:**

03/05/10

Lab ID:	L1002956-03
Client ID:	SSSV-1
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	03/05/10 03:40
Analyst:	RY

Date Collected:	02/25/10 12:43
Date Received:	02/27/10
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,3-Trimethylbenzene	0.551	0.200	2.71	0.983		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48	J	1
1,2,4-Trimethylbenzene	1.14	0.200	5.59	0.982		1
1,2,4,5-Tetramethylbenzene	ND	2.50	ND	13.7	J÷	1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethylbenzene	0.285	0.200	1.40	0.982	J	1
1,3-Butadiene	0.675	0.200	1.49	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	0.211	0.200	1.27	1.20	J	1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	0.486	0.200	2.27	0.934		1
2-Butanone	10.3	0.200	30.4	0.589		1
o-Chlorotoluene	ND	0.200	ND	1.03		1
2-Hexanone	0.814	0.200	3.33	0.819	·····	1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	0.307	0.200	1.51	0.982	J	1
Acetone	46.9	1.00	111	2.37		1

03051016:26 Lab Number: L1002956 Report Date: 03/05/10

Lab ID: Client ID: Sample Location:	L1002956-03 SSSV-1 BROOKLYN, NY	ppbV		ug/m3	Date I Field	Collected: Received: Prep:	02/25/10 12:43 02/27/10 Not Specified Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab						
Benzene		35.8	0.200	114	0.638		1
Bromodichloromethane		ND	0.200	ND	1.34		1
Bromoform		ND	0.200	ND	2.06		1
Bromomethane		ND	0.200	ND	0.776		1
Carbon disulfide		0.947	0.200	2.95	0.622		1
Carbon tetrachloride		ND	0.200	ND	1.26		1
Chlorobenzene		ND	0.200	ND	0.920		1
Chloroethane		ND	0.200	ND	0.527		1
Chloroform		ND	0.200	ND	0.976		1
Chloromethane		0.782	0.200	1.61	0.413		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	•	ND	0.200	ND	0.907		1
Cyclohexane		0.749	0.200	2.58	0.688		1
Dibromochloromethane		ND	0.200	ND	1.70		1
Dichlorodifluoromethan	9	0.478	0.200	2.36	0.988		1
Ethylbenzene		1.16	0.200	5.04	0.868		1
1,1,2-Trichloro-1,2,2-Tri	fluoroethane	ND	0.200	ND	1.53		1
1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	0.200	ND	1.40		1
Heptane		2.68	0.200	11.0	0.819		1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
n-Hexane		5.54	0.200	19.5	0.704		1
iso-Propyl Alcohol		4.67	0.500	11.5	1.23	J	1
Methylene chloride		ND	0.500	ND	1.74		1
4-Methyl-2-pentanone		0.495	0.200	2.03	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
p/m-Xylene		3.01	0.200	13.0	0.868	J	1
o-Xylene		1.69	0.200	7.34	0.868		1
Naphthalene		3.49	0.200	18.3	1.05	T	1

03051016:26 Lab Number:

L1002956

03/05/10

Report Date:

Lab ID: Client ID:	L1002956-03 SSSV-1					Collected: Received:	02/25/1 02/27/1	
Sample Location:	BROOKLYN, NY				Field	Prep:	Not Spe	
		ppb∖	/	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		0.994	0.200	4.23	0.851		1	
tert-Butyl Alcohol		0.678	0.200	2.06	0.606		1	
Tetrachloroethene		5.56	0.200	37.6	1.36		1	
Thiophene		ND	0.200	ND	0.688		1	
Toluene		16.1	0.200	60.8	0.753		1	
trans-1,2-Dichloroethene	9	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroproper	пе	ND	0.200	ND	0.907		1	
Trichloroethene		ND	0.200	ND	1.07		1	
Trichlorofluoromethane		0.235	0.200	1.32	1.12		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	
Indane		1.10	0.200	5.29	0.967		1	
Indene		2.46	0.200	11.7	0.950	J	1	
1-Methylnaphthalene		ND	2.50	ND	14.5		1	
2-Methylnaphthalene		ND	2.50	ND	14.5	J	1	

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

03051016:26

Lab Number: Report Date:

03/05/10

L1002956

SAMPLE RESULTS

Lab ID:	L1002956-04 D
Client ID:	SSSV-2
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	03/05/10 04:14
Analyst:	RY

Date Collected:	02/25/10 13:38
Date Received:	02/27/10
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab						
1,1,1-Trichloroethane	ND	1.00	ND	5.45		5
1,1,2,2-Tetrachloroethane	ND	1.00	ND	6.86		5
1,1,2-Trichloroethane	ND	1.00	ND	5.45		5
1,1-Dichloroethane	ND	1.00	ND	4.04		5
1,1-Dichloroethene	ND	1.00	ND	3.96		5
1,2,3-Trimethylbenzene	ND	1.00	ND	4.92		5
1,2,4-Trichlorobenzene	ND	1.00	ND	7.42	J	5
1,2,4-Trimethylbenzene	ND	1.00	ND	4.91		5
1,2,4,5-Tetramethylbenzene	ND	12.5	ND	68.6	J	5
1,2-Dibromoethane	ND	1.00	ND	7.68		5
1,2-Dichlorobenzene	ND	1.00	ND	6.01		5
1,2-Dichloroethane	ND	1.00	ND	4.04		5
1,2-Dichloropropane	ND	1.00	ND	4.62		5
1,3,5-Trimethylbenzene	ND	1.00	ND	4.91		5
1,3-Butadiene	1.09	1.00	2.41	2.21		5
1,3-Dichlorobenzene	ND	1.00	ND	6.01		5
1,4-Dichlorobenzene	ND	1.00	ND	6.01		5
1,4-Dioxane	ND	1.00	ND	3.60		5
2,2,4-Trimethylpentane	ND	1.00	ND	4.67		5
2-Butanone	4.79	1.00	14.1	2.95		5
o-Chlorotoluene	ND	1.00	ND	5.17		5
2-Hexanone	ND	1.00	ND	4.10		5
3-Chloropropene	ND	1.00	ND	3.13	an a	5
4-Ethyltoluene	ND	1.00	ND	4.91		5
Acetone	24.7	5.00	58.7	11.9		5

·

 Lab Number:
 L1002956

 Report Date:
 03/05/10

03051016:26

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1002956-04 D SSSV-2 BROOKLYN, NY					Collected: Received: Prep:	02/25/10 13:38 02/27/10 Not Specified
		ppbV		ug/m3	3		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab						
Benzene		ND	1.00	ND	3.19		5
Bromodichloromethane		ND	1.00	ND	6.70		5
Bromoform		ND	1.00	ND	10.3		5
Bromomethane		ND	1.00	ND	3.88		5
Carbon disulfide		1.02	1.00	3.17	3.11		5
Carbon tetrachloride		ND	1.00	ND	6.29		5
Chlorobenzene		ND	1.00	ND	4.60		5
Chloroethane		ND	1.00	ND	2.64		5
Chloroform		ND	1.00	ND	4.88		5
Chloromethane		ND	1.00	ND	2.06		5
cis-1,2-Dichloroethene		ND	1.00	ND	3.96		5
cis-1,3-Dichloropropene		ND	1.00	ND	4.53		5
Cyclohexane		ND	1.00	ND	3.44		5
Dibromochloromethane		ND	1.00	ND	8.51		5
Dichlorodifluoromethane		ND	1.00	ND	4.94		5
Ethylbenzene		ND	1.00	ND	4.34		5
1,1,2-Trichloro-1,2,2-Trif	luoroethane	ND	1.00	ND	7.66		5
1,2-Dichloro-1,1,2,2-tetra	afluoroethane	ND	1.00	ND	6.98		5
Heptane		1.00	1.00	4.12	4.10	annannan Latvæyn (†	5
Hexachlorobutadiene		ND	1.00	ND	10.6		5
n-Hexane		2.16	1.00	7.61	3.52		5
iso-Propyl Alcohol		ND	2.50	ND	6.14	Ţ	5
Methylene chloride		ND	2.50	ND	8.68		5
4-Methyl-2-pentanone		ND	1.00	ND	4.09		5
Methyl tert butyl ether		ND	1.00	ND	3.60		5
p/m-Xylene		ND	1.00	ND	4.34		5
o-Xylene		ND	1.00	ND	4.34	······································	5

.

03051016:26 Lab Number: L1002956

03/05/10

Report Date:

Lab ID: Client ID:	L1002956-04 D SSSV-2					Collected: Received:	02/25/10 02/27/10	
Sample Location:	BROOKLYN, NY					Prep:	Not Spec	
		ppbV	,	ug/m	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		ND	1.00	ND	4.26		5	
tert-Butyl Alcohol		ND	1.00	ND	3.03		5	
Tetrachloroethene		1.25	1.00	8.47	6.78		5	
Thiophene		ND	1.00	` ND	3.44		5	
Toluene		1.88	1.00	7.10	3.76		5	
trans-1,2-Dichloroethene)	ND	1.00	ND	3.96		5	
trans-1,3-Dichloroproper	ne	ND	1.00	ND	4.53		5	
Trichloroethene		ND	1.00	ND	5.37		5	
Trichlorofluoromethane		ND	1.00	ND	5.61		5	
Vinyl bromide		ND	1.00	ND	4.37		5	
Vinyl chloride		ND	1.00	ND	2.55		5	
Indane		1.55	1.00	7.49	4.83		5	
Indene		ND	1.00	ND	4.75	A	5	
1-Methylnaphthalene		ND	12.5	ND	72.7		5	
2-Methylnaphthalene		ND	12.5	ND	72.7	J	5	

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

03051016:26

Report Date:

Lab Number:

L1002956 03/05/10

Lab ID:	L1002956-05 D
Client ID:	DUP022510
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48, TO- 15
Analytical Date:	03/05/10 04:49
Analyst:	RY

Date Collected:	02/25/10 00:00
Date Received:	02/27/10
Field Prep:	Not Specified

	ppbV	1	ug/m	3		Dilution	
Parameter	Results RDL Results RD				RDL Qualifier		
Volatile Organics in Air - Mansfield Lab							
1,1,1-Trichloroethane	ND	1.00	ND	5.45		5	
1,1,2,2-Tetrachloroethane	ND	1.00	ND	6.86		5	
1,1,2-Trichloroethane	ND	1.00	ND	5.45		5	
1,1-Dichloroethane	ND	1.00	ND	4.04		5	
1,1-Dichloroethene	ND	1.00	ND	3.96		5	
1,2,3-Trimethylbenzene	ND	1.00	ND	4.92		5	
1,2,4-Trichlorobenzene	ND	1.00	ND	7.42	J.	5	
1,2,4-Trimethylbenzene	ND	1.00	ND	4.91		5	
1,2,4,5-Tetramethylbenzene	ND	12.5	ND	68.6		5	
1,2-Dibromoethane	ND	1.00	ND	7.68	<u></u>	5	
1,2-Dichlorobenzene	ND	1.00	ND	6.01		5	
1,2-Dichloroethane	ND	1.00	ND	4.04		5	
1,2-Dichloropropane	ND	1.00	ND	4.62		5	
1,3,5-Trimethylbenzene	ND	1.00	ND	4.91	J	5	
1,3-Butadiene	ND	1.00	ND	2.21		5	
1,3-Dichlorobenzene	ND	1.00	ND	6.01		5	
1,4-Dichlorobenzene	ND	1.00	ND	6.01	J	5	
1,4-Dioxane	ND	1.00	ND	3.60	en Welsen die eine eine eine kannel werden Welse Antonik Welsen ein die Antonik kanne kanne	5	
2,2,4-Trimethylpentane	ND	1.00	ND	4.67		5	
2-Butanone	8.38	1.00	24.7	2.95		5	
o-Chlorotoluene	ND	1.00	ND	5.17		5	
2-Hexanone	ND	1.00	ND	4.10		5	
3-Chloropropene	ND	1.00	ND	3.13		5	
4-Ethyltoluene	ND	1.00	ND	4.91	J	5	
Acetone	39.5	5.00	93.7	11.9		5	

03051016:26

Lab Number: Report Date:

L1002956 03/05/10

Client ID:	L1002956-05 D DUP022510 BROOKLYN, NY				Date Field	Collected: Received: Prep:	02/25/10 00:0 02/27/10 Not Specified	
Parameter		ppbV		ug/m: Results	RDL	Qualifier	Dilution Factor	
Volatile Organics in A	.ir - Mansfield Lab	Results	RDL	itesuits		· · · · · ·	and a second	
Benzene		32.6	1.00	104	3.19		5	
Bromodichloromethane			1.00	ND	6.70		5	
Bromoform		ND	1.00	ND	10.3		5	
Bromomethane		ND	1.00	ND	3.88		5	
Carbon disulfide		ND	1.00	ND	3.11		5	
Carbon tetrachloride		ND			6.29			
Chlorobenzene			1.00	ND			5	
Chloroethane		ND	1.00	ND	4.60		5	
Chloroform		ND	1.00	ND	2.64		5	
Chloromethane		ND	1.00	ND	4.88		5	
		ND	1.00	ND	2.06		5	
cis-1,2-Dichloroethene		ND	1.00	ND	3.96		5	
cis-1,3-Dichloropropene		ND	1.00	ND	4.53		5	
Cyclohexane		ND	1.00	ND	3.44		5	
Dibromochloromethane		ND	1.00	ND	8.51		5	
Dichlorodifluoromethane		ND	1.00	ND	4.94		5	
Ethylbenzene		ND	1.00	ND	4.34	0000 0000.0000.0000.0000	5	
1,1,2-Trichloro-1,2,2-Triflu	oroethane	ND	1.00	ND	7.66		5	
1,2-Dichloro-1,1,2,2-tetrafl	uoroethane	ND	1.00	ND	6.98		5	
Heptane		2.28	1.00	9.36	4.10		5	
Hexachlorobutadiene		ND	1.00	ND	10.6		5	
n-Hexane		5.42	1.00	19.1	3.52		5	
iso-Propyl Alcohol		4.30	2.50	10.5	6.14	J	5	
Methylene chloride		ND	2.50	ND	8.68		5	
4-Methyl-2-pentanone		ND	1.00	ND	4.09		5	
Methyl tert butyl ether		ND	1.00	ND	3.60		5	
p/m-Xylene		2.10	1.00	9.13	4.34	J	5	
o-Xylene		1.19	1.00	5.16	4.34		5	
Naphthalene		2.04	1.00	10.7	5.24	J	5	
						107		

 Lab Number:
 L1002956

 Report Date:
 03/05/10

03051016:26

Lab ID: Client ID: Sample Location:	L1002956-05 D DUP022510 BROOKLYN, NY					Collected: Received: Prep:	02/25/10 00:00 02/27/10 Not Specified
		ppbV	,	ug/m3	3		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab						
Styrene		ND	1.00	ND	4.26		5
tert-Butyl Alcohol		ND	1.00	ND	3.03		5
Tetrachloroethene		5.06	1.00	34.2	6.78		5
Thiophene		ND	1.00	ND	3.44		5
Toluene		12.5	1.00	47.1	3.76		5
trans-1,2-Dichloroethene	,	ND	1.00	ND	3.96		5
trans-1,3-Dichloroproper	ie	ND	1.00	ND	4.53		5
Trichloroethene		ND	1.00	ND	5.37		5
Trichlorofluoromethane		ND	1.00	ND	5.61		5
Vinyl bromide		ND	1.00	ND	4.37		5
Vinyl chloride		ND	1.00	ND	2.55		5
Indane		ND	1.00	ND	4.83		5
Indene		1.26	1.00	6.01	4.75	ancievent La	5
1-Methylnaphthalene		ND	12.5	ND	72.7		5
2-Methylnaphthalene		ND	12.5	ND	72.7		5

Form No: 101-02 (19-	Inlea 31/10.10	Relinquis	Jonk Lel	<u>)</u> .	2/2 7.06 2/26	5/10 210 10/10/15	TH	rece arso uddle MU	eived By:	ul	7. 21	-26 126	10/1	1:05 229 1:10 45	7	guities are re submitted are Jerms and C See reverse	solved. All samples subject to Alpha's onditions:
r i i i i i i i i i i i i i i i i i i i	PLE MATRIX CODES	AA = Ambient SV = Soil Vapo Other = Please	or/Landfill C Specify		Dot	e/Time		en de la companya de La companya de la comp	Containe			C	Sate/Tir	ne'	-	completely.	clearly, legibly and Samples can not be turnaround time start until any ambi
				<u> </u>													đ
						;		_	-					ŀ			-
							· .						+			· · · .	
				•		`			·							·	
5	Dup022510	12510			-28	-6	AA	09	GL	705	0267	X				. ·	
<u> </u>	5558-2	2/25/10	1308	1338	-28,5		AA	O.P.	64	K438		X					· .
3	5'55V-L	2/25/10	12/14	12:43		-6	AA	04	6L	1679	0368	X					
2	5558-3	2/24/10	1252	1325	-29	-7-	AA-	048	GL	979	0048		4				
956.1	5558-4	2/24/10	-	1454	-29	-7-	AA	QQ.	61	923	0252			·		-	
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	Co Start Time	llecti End Time	Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	s Can Size	I D Can	I D - Flow Controller	TO-14A by	10-15 + NY -15	FIXED GAD	10-134	t <u>[</u>	omments (i.e. P i l
	A	l Colum	ns B	elow	/ Mus	st Be	> Fill	ed C	Dut			A 61	HIN S	040	13 × 13	10.10	
						;	,						Stor 12		100		
These samples	have been previously analyzed by A Specific Requirements/C		3/5/10)	Time:		<u> </u>						11-				
Encile :	cealercadis-us, com	BX Standard		RUSH (oniy o		proved!)		· · .	· .	•	· · · .			AN	ALYS	SIS	- -
	1-249-7600 31-249-7610																
	, Melville, NY 11747	ALPHA Qu	ote #:	e	1			to: (if differer									
Address: 2H	intington Quadrengle	Project Ma	Project Manager: Chris Keen					AIL (stand litional De	lard pdf	• •				gulato e/Fed		equirement Program	ts/Report Limit
Client:	Arcadis	Project #:	Project #: B0036 704,0000,0000 5						-	iatory Crite	eria Indicated	d)				-	
Client Informa			Project Name: Former Dangmer Park MGB, te DADEX Project Location: Brooklyn, NY Criteria Checker:														
	Mansfield, MA 02048 00 FAX: 508-822-3288	Project I Project Nat			Park	MGPL				Bala B	Chrorax		4	ime as			
			- C				Donoi	t Inform	ation -	Data D	alivarat	alec		ing In		< 11 (+) 1	

Imagine the result

Former Dangman Park MGP Site

Data Usability Summary Report

BROOKLYN, NEW YORK

Volatile Analyses

SDG# L1003075

Analyses Performed By: Alpha Analytical Mansfield, Massachusetts

Report: #11762R Review Level: Tier III Project: B0036704.0000.00005

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # L1003075 for samples collected in association with the Former Dangman Park MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	РСВ	MET	MISC
SSSV-7	L1003075-01	Air	3/1/2010		Х				
SSSV-5	L1003075-02	Air	3/1/2010		Х				
SSSV-6	L1003075-03	Air	3/1/2010		Х				

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Rep	orted		mance ptable	Not	
Items Reviewed	No	Yes	No	Yes	Required	
Sample receipt condition		Х		Х		
Requested analyses and sample results		Х		Х		
Collection Technique (grab, composite, etc.)		Х		Х		
Methods of analysis		Х		Х		
Reporting limits		Х		Х		
Sample collection date		Х		Х		
Laboratory sample received date		Х		Х		
Sample preservation verification (as applicable)		Х		Х		
Sample preparation/extraction/analysis dates		Х		Х		
Fully executed Chain-of-Custody (COC) form completed		Х		х		
Narrative summary of QA or sample problems provided		Х		х		
Data Package Completeness and Compliance		Х		Х		

QA - Quality Assurance

INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15) and NYSDEC Modifications to R9 TO-15 QA/QC Criteria February 2008.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on

data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Method TO-15	Air	30 days storage from collection to analysis	Ambient temperature

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Several sample locations were compliant with the Method TO-15 requirement of analysis within a 24-hour tune clock but not compliant with the NYSDEC requirement of analysis within a 12-hour tune clock. The data was not qualified.

Mass spectrometer performance was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations associated with this SDG		1,2,4,5-Trimethylbenzene	31.2%
	ICV %RSD	1,2,4-Trichlorobenzene	33.0%
		2-Methylnaphthalene	39.8%
	CCV %D	Iso-Propyl alcohol	-30.9%
		1-Methylnaphthalene	37.8%
		2-Methylnaphthalene	46.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	KKF <0.05	Detect	J
	RRF <0.01 ¹	Non-detect	R
	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 01 RRF >0.01	Detect	NO ACIION
Initial Calibration	%RSD > 30%	Non-detect	UJ
	%RSD > 30%	Detect	J
	9/D > 20% (increases in consitivity)	Non-detect	No Action
	%D >30% (increase in sensitivity)	Detect	J
Continuing Calibration	9/D > 20% (decreases in constitution)	Non-detect	UJ
	%D >30% (decrease in sensitivity)	Detect	J

1 RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketenes, 1,4-dioxane, etc.)

5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing

calibration standard.

All internal standard responses were within control limits.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%. The relative percent difference (RPD) between the LCS recoveries must exhibit an RPD within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

7. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

The laboratory duplicates exhibited acceptable results.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

A field duplicate was not included with this SDG.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
SSSV-6	Tetrachloroethene	55200 E	89400 D	89400 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs; TO-15	Rep	orted		mance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)				
Tier II Validation	1	1	1			
Canister return pressure/vacuum (5"Hg <u>+</u> 1)		Х		Х		
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
C. Trip blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate(LCSD)					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS)					Х	
Matrix Spike Duplicate(MSD)					Х	
MS/MSD Precision (RPD)					Х	
Field/Lab Duplicate (%D)					Х	
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х	Х			
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	X			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A.Reconstructed ion chromatograms		Х		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		х		Х		

VOCs; TO-15		orted		Performance Acceptable		
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/N	/IS)				
D.Transcription/calculation errors present				Х		
E.Reporting limits adjusted to reflect sample dilutions		х		Х		
%RSD Percent relative difference			•			

%RSDPercent relative difference%RPercent recovery

Percent recovery Relative percent difference Percent difference

RPD %D

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹				Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	PCB/PEST /HERB	MET	MISC	Noncompliance
L1003075	3/1/2010	TO-15	SSSV-7	Air	No					VOC –ICV %RSD, CCV %D
L1003075	3/1/2010	TO-15	SSSV-5	Air	No					VOC –ICV %RSD, CCV %D
L1003075	3/1/2010	TO-15	SSSV-6	Air	No					VOC –ICV %RSD, CCV %D

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

VALIDATION PERFORMED BY: Jeffrey L. Davin

SIGNATURE:

Jeffry d. a)_.

DATE: March 12, 2010

PEER REVIEW BY: Dennis Capria

DATE: March 17, 2010

CORRECTED SAMPLE ANALYSIS DATA SHEETS AND COCs

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

L1003075

03/09/10

Lab Number: Report Date:

L1003075-01
SSSV-7
BROOKLYN, NY
Soil_Vapor
48,TO-15
03/05/10 08:54
RY

Date Collected:	03/01/10 12:00
Date Received:	03/02/10
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution Factor	
Parameter	Results	RDL	Results	RDL	Qualifier		
Volatile Organics in Air - Mansfield Lab							
1,1,1-Trichloroethane	ND	0.400	ND	2.18		2	
1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2	
1,1,2-Trichloroethane	ND	0.400	ND	2.18		2	
1,1-Dichloroethane	ND	0.400	ND	1.62		2	
1,1-Dichloroethene	ND	0.400	ND	1.58		2	
1,2,3-Trimethylbenzene	ND	0.400	ND	1.97	l Vold fridelik istan a Unit on human den sek men hen som en som	2	
1,2,4-Trichlorobenzene	ND	0.400	ND	2.97	J	2	
1,2,4-Trimethylbenzene	ND	0.400	ND	1.96		2	
1,2,4,5-Tetramethylbenzene	ND	5.00	ND	27.4		2	
1,2-Dibromoethane	ND	0.400	ND	3.07		2	
1,2-Dichlorobenzene	ND	0.400	ND	2.40		2	
1,2-Dichloroethane	ND	0.400	ND	1.62		2	
1,2-Dichloropropane	ND	0.400	ND	1.85		2	
1,3,5-Trimethylbenzene	ND	0.400	ND	1.96		2	
1,3-Butadiene	ND	0.400	ND	0.884		2	
1,3-Dichlorobenzene	ND	0.400	ND	2.40		2	
1,4-Dichlorobenzene	ND	0.400	ND	2.40		2	
1,4-Dioxane	ND	0.400	ND	1.44		2	
2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2	
2-Butanone	1.66	0.400	4.89	1.18		2	
o-Chlorotoluene	ND	0.400	ND	2.07		2	
2-Hexanone	ND	0.400	ND	1.64		2	
3-Chloropropene	ND	0.400	ND	1.25		2	
4-Ethyltoluene	ND	0.400	ND	1.96		2	
Acetone	5.63	2.00	13.4	4.75		2	
NERGEBER CONTRACTOR CONT							

03091013:37

Lab Number: Report Date:

L1003075 03/09/10

Lab ID: Client ID: Sample Location:	L1003075-01 SSSV-7 BROOKLYN, NY				Date	Collected: Received: Prep:	03/01/10 12:0 03/02/10 Not Specified	
		ppbV		ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Benzene		ND	0.400	ND	1.28		2	
Bromodichloromethane		ND	0.400	ND	2.68		2	
Bromoform		ND	0.400	ND	4.13		2	
Bromomethane		ND	0.400	ND	1.55		2	
Carbon disulfide		ND	0.400	ND	1.24		2	
Carbon tetrachloride		ND	0.400	ND	2.51		2	
Chlorobenzene		ND	0.400	ND	1.84		2	
Chloroethane		ND	0.400	ND	1.05		2	
Chloroform		1.60	0.400	7.80	1.95		2	
Chloromethane		ND	0.400	ND	0.825		2	
cis-1,2-Dichloroethene		ND	0.400	ND	1.58		2	
cis-1,3-Dichloropropene		ND	0.400	ND	1.81		2	
Cyclohexane		ND	0.400	ND	1.38		2	
Dibromochloromethane		0.404	0.400	3.44	3.40		2	
Dichlorodifluoromethane)	0.448	0.400	2.21	1.98		2	
Ethylbenzene		ND	0.400	ND	1.74		2	
1,1,2-Trichloro-1,2,2-Tri	fluoroethane	ND	0.400	ND	3.06		2	
1,2-Dichloro-1,1,2,2-tetr	afluoroethane	ND	0.400	ND	2.79		2	
Heptane		0.484	0.400	1.98	1.64		2	
Hexachlorobutadiene		ND	0.400	ND	4.26		2	
n-Hexane		2.00	0.400	7.04	1.41		2	
iso-Propyl Alcohol		ND	1.00	ND	2.46	J	2	
Methylene chloride		ND	1.00	ND	3.47		2	
4-Methyl-2-pentanone		ND	0.400	ND	1.64	Jilan (117)	2	
Methyl tert butyl ether		ND	0.400	ND	1.44		2	
p/m-Xylene		ND	0.400	ND	1.74		2	
o-Xylene		ND	0.400	ND	1.74		2	
Naphthalene		ND	0.400	ND	2.10		2	

03091013:37

Lab Number: Report Date:

L1003075 03/09/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1003075-01 SSSV-7 BROOKLYN, NY				Date Date Field		03/01/10 12:00 03/02/10 Not Specified	
		ppbV	,	ug/m	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in	Air - Mansfield Lab							
Styrene		10.1	0.400	42.9	1.70		2	
tert-Butyl Alcohol		ND	0.400	ND	1.21		2	
Tetrachloroethene		5.67	0.400	38.4	2.71		2	
Thiophene		ND	0.400	ND	1.38		2	
Toluene		ND	0.400	ND	1.51		2	
trans-1,2-Dichloroethen	e	ND	0.400	ND	1.58		2	
trans-1,3-Dichloroprope	ne	ND	0.400	ND	1.81		2	
Trichloroethene		ND	0.400	ND	2.15		2	
Trichlorofluoromethane		0.402	0.400	2.26	2.24		2	
Vinyl bromide		ND	0.400	ND	1.75		2	
Vinyl chloride		ND	0.400	ND	1.02		2	
Indane		ND	0.400	ND	1.93	44	2	
Indene		ND	0.400	ND	1.90		2	
1-Methylnaphthalene		ND	5.00	ND	29.1		2	
2-Methylnaphthalene		ND	5.00	ND	29.1	J	2	

法裁

03091013:37 Lab Number: L1003075

Report Date: 03/09/10

SAMPLE RESULTS

Lab ID:	L1003075-02	R\D2
Client ID:	SSSV-5	
Sample Location:	BROOKLYN, N	١Y
Matrix:	Soil_Vapor	
Anaytical Method:	48,TO-15	
Analytical Date:	03/05/10 12:34	
Analyst:	RY	

Date Collected:	03/01/10 08:12
Date Received:	03/02/10
Field Prep:	Not Specified

	ppbV		ug/m		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab					
1,1,1-Trichloroethane	ND	2.00	ND	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	ND	2.00	ND	8.09		10
1,1-Dichloroethene	ND	2.00	ND	7.92		10
1,2,3-Trimethylbenzene	ND	2.00	ND	9.83		10
1,2,4-Trichlorobenzene	ND	2.00	ND	14.8	T	10
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10
1,2,4,5-Tetramethylbenzene	ND	25.0	ND	137.	J	10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10
1,2-Dichloroethane	ND	2.00	ND	8.09		10
1,2-Dichloropropane	ND	2.00	ND	9.24		10
1,3,5-Trimethylbenzene	ND	2.00	ND	9.82	ne op de la seconda de la s	10
1,3-Butadiene	ND	2.00	ND	4.42		10
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	24.9	2.00	73.4	5.89		10
o-Chlorotoluene	ND	2.00	ND	10.3		10
2-Hexanone	ND	2.00	ND	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
4-Ethyltoluene	ND	2.00	ND	9.82		10
Acetone	80.4	10.0	191	23.7		10

•

Lab Number: Report Date:

L1003075 03/09/10

Parameter Volatile Organics in Air Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloroform Chloromethane	r - Mansfield Lab	ppbV Results		ug/m3			Dilution
Benzene Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	r - Mansfield Lab		RDL	Results	RDL	Qualifier	Factor
Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform							
Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		16.4	2.00	52.4	6.38		10
Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND	2.00	ND	13.4		10
Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND	2.00	ND	20.6		10
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND	2.00	ND	7.76		10
Chlorobenzene Chloroethane Chloroform		3.09	2.00	9.61	6.22		10
Chloroethane Chloroform		ND	2.00	ND	12.6		10
Chloroform		ND	2.00	ND	9.20		10
		ND	2.00	ND	5.27		10
Chloromethane		ND	2.00	ND	9.76		10
		ND	2.00	ND	4.13		10
cis-1,2-Dichloroethene		ND	2.00	ND	7.92		10
cis-1,3-Dichloropropene		ND	2.00	ND	9.07		10
Cyclohexane		154	2.00	531	6.88		10
Dibromochloromethane		ND	2.00	ND	17.0	NE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
Dichlorodifluoromethane		ND	2.00	ND	9.88		10
Ethylbenzene		ND	2.00	ND	8.68		10
1,1,2-Trichloro-1,2,2-Trifluo	roethane	ND	2.00	ND	15.3		10
1,2-Dichloro-1,1,2,2-tetraflu	oroethane	ND	2.00	ND	14.0		10
Heptane		98.0	2.00	401	8.19		10
Hexachlorobutadiene		ND	2.00	ND	21.3		10
n-Hexane		404	2.00	1420	7.04		10
iso-Propyl Alcohol		ND	5.00	ND	12.3	J	10
Methylene chloride		6.10	5.00	21.2	17.4		10
4-Methyl-2-pentanone		ND	2.00	ND	8.19		10
Methyl tert butyl ether		ND	2.00	ND	7.20		10
p/m-Xylene		ND	2.00	ND	8.68		10
o-Xylene		ND	2.00	ND	8.68		10
Naphthalene		2.36	2.00	12.4			

L1003075

03/09/10

Lab Number: Report Date:

Lab ID: Client ID: Sample Location:	L1003075-02 R\I SSSV-5 BROOKLYN, NY	52			Date	Collected: Received: Prep:	03/01/10 08:1: 03/02/10 Not Specified
		ppb\	/	ug/m3	3		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab						
Styrene		ND	2.00	ND	8.51		10
tert-Butyl Alcohol		ND	2.00	ND	6.06		10
Tetrachloroethene		ND	2.00	ND	13.6		10
Thiophene		ND	2.00	ND	6.88		10
Toluene		2.83	2.00	10.6	7.53		10
trans-1,2-Dichloroethene	Э	ND	2.00	ND	7.92		10
trans-1,3-Dichloroproper	ne	ND	2.00	ND	9.07		10
Trichloroethene		ND	2.00	ND	10.7		10
Trichlorofluoromethane		ND	2.00	ND	11.2		10
Vinyl bromide		ND	2.00	ND	8.74		10
Vinyl chloride		ND	2.00	ND	5.11		10
Indane		ND	2.00	ND	9.67		10
Indene		ND	2.00	ND	9.50		10
1-Methylnaphthalene		ND	25.0	ND	145.		10
2-Methylnaphthalene		ND	25.0	ND	145.	J	10

Project Name:	FORMER DANGMAN PARK MGP SITE
Project Number:	B0036704.0000.00005

L1003075

03/09/10

Lab Number: Report Date:

Lab ID:	L1003075-03 D
Client ID:	SSSV-6
Sample Location:	BROOKLYN, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	03/05/10 10:51
Analyst:	RY

Date Collected:	03/01/10 09:54
Date Received:	03/02/10
Field Prep:	Not Specified

	ppb\	/	ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air - Mansfi	eld Lab						
1,1,1-Trichloroethane	ND	45.5	ND	248.		227.7	
1,1,2,2-Tetrachloroethane	ND	45.5	ND	312.		227.7	
1,1,2-Trichloroethane	ND	45.5	ND	248.		227.7	
1,1-Dichloroethane	ND	45.5	ND	184.		227.7	
1,1-Dichloroethene	ND	45.5	ND	180.		227.7	
1,2,3-Trimethylbenzene	ND	45.5	ND	224.		227.7	
1,2,4-Trichlorobenzene	ND	45.5	ND	338.	J	227.7	
1,2,4-Trimethylbenzene	ND	45.5	ND	224.		227.7	
1,2,4,5-Tetramethylbenzene	ND	569.	ND	3120	J	227.7	
1,2-Dibromoethane	ND	45.5	ND	350.		227.7	
1,2-Dichlorobenzene	ND	45.5	ND	274.		227.7	
1,2-Dichloroethane	ND	45.5	ND	184.		227.7	
1,2-Dichloropropane	ND	45.5	ND	210.		227.7	
1,3,5-Trimethylbenzene	ND	45.5	ND	224.		227.7	
1,3-Butadiene	ND	45.5	ND	101.		227.7	
1,3-Dichlorobenzene	ND	45.5	ND	274.		227.7	
1,4-Dichlorobenzene	ND	45.5	ND	274.		227.7	
1,4-Dioxane	ND	45.5	ND	164.		227.7	
2,2,4-Trimethylpentane	ND	45.5	ND	212.		227.7	
2-Butanone	ND	45.5	ND	134.		227.7	
o-Chlorotoluene	ND	45.5	ND	236.		227.7	
2-Hexanone	ND	45.5	ND	186.		227.7	
3-Chloropropene	ND	45.5	ND	142.		227.7	
4-Ethyltoluene	ND	45.5	ND	224.		227.7	
Acetone	ND	228.	ND	540.		227.7	

Lab Number: Report Date:

L1003075 03/09/10

Lab ID: Client ID: Sample Location:	L1003075-03 D SSSV-6 BROOKLYN, NY				Date Collected: Date Received: Field Prep:		03/01/10 09:54 03/02/10 Not Specified	
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor	
Volatile Organics in Air - Mansfield Lab		Results	KUL			Quanner		
Benzene		ND	45.5	ND	145		227.7	
Bromodichloromethane		ND	45.5	ND	305.		227.7	
Bromoform		ND	45.5	ND	470.		227.7	
Bromomethane		ND	45.5	ND	177.		227.7	
Carbon disulfide		ND	45.5	ND	142.		227.7	
Carbon tetrachloride		ND	45.5	ND	286.		227.7	
Chlorobenzene		ND	45.5	ND	209.		227.7	
Chloroethane		ND	45.5	ND	120.		227.7	
Chloroform		ND	45.5	ND	222		227.7	
Chloromethane		ND	45.5	ND	94.0		227.7	
cis-1,2-Dichloroethene		428	45.5	1700	180		227.7	
cis-1,3-Dichloropropene)	ND	45.5	ND	206.		227.7	
Cyclohexane		ND	45.5	ND	157.		227.7	
Dibromochloromethane		ND	45.5	ND	388.		227.7	
Dichlorodifluoromethan	e	ND	45.5	ND	225.		227.7	
Ethylbenzene		ND	45.5	ND	198.		227.7	
1,1,2-Trichloro-1,2,2-Tr	ifluoroethane	ND	45.5	ND	349.		227.7	
1,2-Dichloro-1,1,2,2-tet	rafluoroethane	ND	45.5	ND	318.		227.7	
Heptane		ND	45.5	ND	186.		227.7	
Hexachlorobutadiene		ND	45.5	ND	485.		227.7	
n-Hexane		ND	45.5	ND	160		227.7	
iso-Propyl Alcohol		ND	114.	ND	280.	J	227.7	
Methylene chloride		ND	114	ND	395		227.7	
4-Methyl-2-pentanone		ND	45.5	ND	186.		227.7	
Methyl tert butyl ether		ND	45.5	ND	164.		227.7	
p/m-Xylene		ND	45.5	ND	198.		227.7	
o-Xylene		ND	45.5	ND	198.		227.7	
Naphthalene		ND	45.5	ND	238.		227.7	

03091013:37

L1003075

03/09/10

Lab Number: Report Date:

Lab ID: Client ID: Sample Location:	L1003075-03 SSSV-6 BROOKLYN, N	D			Dat	e Collected: e Received: d Prep:	03/01/ [:] 03/02/ [:] Not Sp	
			ppbV	ug/	/m3		Dilution	
Parameter		Resu	lts RDL	Results	RDL	Qualifier	Factor	-
Volatile Organics in	Air - Mansfield L	ab						
Styrene		N	D 45.5	ND	194.		227.7	
tert-Butyl Alcohol		N	D 45.5	ND	138.		227.7	
Tetrachloroethene	8	9400-552	00- 182 45:5	606000 374000	- 1230-309	-E D	227.7	
Thiophene		N	D 45.5	ND	157.		227.7	
Toluene		N	D 45.5	ND	171.		227.7	
trans-1,2-Dichloroethen	Ð	N	D 45.5	ND	180		227.7	
trans-1,3-Dichloroprope	ne	NI	D 45.5	ND	206.		227.7	
Trichloroethene		522	20 45.5	28000	244		227.7	
Trichlorofluoromethane		NI	D 45.5	ND	256.		227.7	
Vinyl bromide		N	D 45.5	ND	199.		227.7	
Vinyl chloride		82	.4 45.5	210	116		227.7	
Indane		N	D 45.5	ND	220.		227.7	
Indene		N	D 45.5	ND	216.		227.7	
1-Methylnaphthalene		N	D 569	ND	3310		227.7	
2-Methylnaphthalene		N	D 569	ND	3310	J	227.7	-

		03091013:37							
Project Name: FORMER DAI		Lab Number:	L1003075						
Project Number: B0036704.000		Report Date:	03/09/10						
	SAMPLE RES	SULTS							
Lab ID:L1003075-03Client ID:SSSV-6Sample Location:BROOKLYNMatrix:Soil_VapotAnaytical Method:48,TO-15Analytical Date:03/05/10 13:Analyst:RY	, NY		Date Collected: Date Received: Field Prep:						
	ppbV	ug/m3		Dilution					
Parameter	Results RDL	Results	RDL Qualifier	Factor					
Volatile Organics in Air - Mansfield	Lab Collection								
Tetrachloroethene	89400 182	606000	1230	911.1					

	FAX: 508-822-3288	Project	Project Information Project Name: Former Dangman Park MGPsite					Date Rec'd in Lab: 3 (2 // Report Information - Data Deliverables						ALPHA Job #: L LOO3075 Billing Information □ Same as Client info PO #:						
Client Information		Project Lo	Project Location: Brooklyn, NY						ADEx Criteria Checker:											
	odrs	Project #:		704.0000		<u>i kana an</u>	1	•		ilatory Crit	ana Indicated)								
ddress: 2 Hunt	Inter Quadrayl	L Project M	Project Manager: Chris Keen				Other Formats:										equirements/Report Limi ^{Program} Criteria			
		7 ALPHAC	ALPHA Quote #:					Additional Deliverables:					Stat	e/Fed		Progra				
Phone: 631-	249-7600	Turn-A	Turn-Around Time					Report to: (if different than Project Manager)												
=ax: 631-2	49-7610		rd D	RUSH (anty o	antimod if non-or	an a						<u>. </u>								
	Carcado-usican	1	•)]											AN	IAL	/SIS				
3 These samples have	been previously analyzed by A		: 3/9/0	0	Time:				· ·				//	J.			//			
Other Project Sp	ecific Requirements/C	comments:										/		7/	/.	1.1	1			
												7. 19	i ti	1	19	1/0/	/			
	A	l Colun	nns E	Below	/ Mu	st Be	≥ Fill	ed C	Dut			T ê	+6	/ /	88	10-10				
ALPHA Lab ID (Lab Use Only)	Sample ID	Date		llecti ∣End Time		Final Vacuum	Sample Matrix*	Sampler Initials		I D Can	1D - Flow Controller	12 /2 2 2	70-15 AD	FIXED	70-134	Sam	iple Co	mments (i.e	ə. Pl	
03075.1	555V-7	31110	11:32 AM	12100	7-30	-12	AA	00	GL		0327	X	1							
2	555V-5	3/1/10	FIY P	8112	-28	-7-	AA	94	GL	652	0269	X								
3	555V-G	3/1/10	91,254	9:54	7-30	-12	AA	94	GL	1635	0297-	X								
				1			· ·		1.5											
																	• .'			
											· · ·						,			
						· ·	·									+				
				,,				-	-								<u> </u>			
				· · · ·		· · · · ·			-	 .				-	<u> </u>					
<u> </u>		AA = Ambien	• A : (T 1- **	100 Harris	- 1930/45-11	 						_							7	
*SAMPLE	MATRIX CODES	AA = Ambien SV = Soil Vap Other = Please	or/Landfill (Containe	г Туре	-	ς				compl	letely. Sa	early, legibly amples can r	hot be	
Rel: P. Giller	3/3/10 10:10	Relinquis	Relinquished By		Date/Time		Received By:					Date/Time:			clock	logged in and turnaround time clock will not start until any am guities are resolved. All sampl		amb		
Lac: El Poor Sulluson alalm		Set by	at hypontin .		3/1/10 1930		Kpe					-2-1	2-10/7:30			submi	submitted are subject to Alpha's			
	10:10	rassent)	1/0		39-1	2/1650	2	ω	noy	<u>v</u>	-	410	<u>/</u>		65	See n	everse si			

Ų